2
0
mirror of https://github.com/boostorg/odeint.git synced 2026-02-13 00:32:08 +00:00
Files
odeint/libs/numeric/odeint/doc/tutorial.qbk
2012-06-25 14:12:47 +02:00

69 lines
2.0 KiB
Plaintext

[section Tutorial]
[include tutorial_harmonic_oscillator.qbk]
[include tutorial_solar_system.qbk]
[include tutorial_chaotic_system.qbk]
[include tutorial_stiff_systems.qbk]
[include tutorial_special_topics.qbk]
[include tutorial_thrust_cuda.qbk]
[include tutorial_vexcl_opencl.qbk]
[section All examples]
The following table gives an overview over all examples.
[include examples_table.qbk]
[endsect]
[section References]
[*General information about numerical integration of ordinary differential equations:]
[1] Press William H et al., Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd ed. (Cambridge University Press, 2007).
[2] Ernst Hairer, Syvert P. Nørsett, and Gerhard Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd ed. (Springer, Berlin, 2009).
[3] Ernst Hairer and Gerhard Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd ed. (Springer, Berlin, 2010).
[*Symplectic integration of numerical integration:]
[4] Ernst Hairer, Gerhard Wanner, and Christian Lubich, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd ed. (Springer-Verlag Gmbh, 2006).
[5] Leimkuhler Benedict and Reich Sebastian, Simulating Hamiltonian Dynamics (Cambridge University Press, 2005).
[*Special symplectic methods:]
[6] Haruo Yoshida, “Construction of higher order symplectic integrators,” Physics Letters A 150, no. 5 (November 12, 1990): 262-268.
[7] Robert I. McLachlan, “On the numerical integration of ordinary differential equations by symmetric composition methods,” SIAM J. Sci. Comput. 16, no. 1 (1995): 151-168.
[*Special systems:]
[8] [@http://www.scholarpedia.org/article/Fermi-Pasta-Ulam_nonlinear_lattice_oscillations Fermi-Pasta-Ulam nonlinear lattice oscillations]
[9] Arkady Pikovsky, Michael Rosemblum, and Jürgen Kurths, Synchronization: A Universal Concept in Nonlinear Sciences. (Cambridge University Press, 2001).
[endsect]
[endsect]