mirror of
https://github.com/boostorg/odeint.git
synced 2026-01-27 07:02:11 +00:00
166 lines
18 KiB
HTML
166 lines
18 KiB
HTML
<html>
|
|
<head>
|
|
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
|
|
<title>Stiff systems</title>
|
|
<link rel="stylesheet" href="../../boostbook.css" type="text/css">
|
|
<meta name="generator" content="DocBook XSL Stylesheets V1.75.2">
|
|
<link rel="home" href="../../index.html" title="Chapter 1. Boost.Numeric.Odeint">
|
|
<link rel="up" href="../tutorial.html" title="Tutorial">
|
|
<link rel="prev" href="chaotic_systems_and_lyapunov_exponents.html" title="Chaotic systems and Lyapunov exponents">
|
|
<link rel="next" href="special_topics.html" title="Special topics">
|
|
</head>
|
|
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
|
|
<table cellpadding="2" width="100%"><tr><td valign="top"></td></tr></table>
|
|
<hr>
|
|
<div class="spirit-nav">
|
|
<a accesskey="p" href="chaotic_systems_and_lyapunov_exponents.html"><img src="../../images/prev.png" alt="Prev"></a><a accesskey="u" href="../tutorial.html"><img src="../../images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../images/home.png" alt="Home"></a><a accesskey="n" href="special_topics.html"><img src="../../images/next.png" alt="Next"></a>
|
|
</div>
|
|
<div class="section">
|
|
<div class="titlepage"><div><div><h3 class="title">
|
|
<a name="boost_numeric_odeint.tutorial.stiff_systems"></a><a class="link" href="stiff_systems.html" title="Stiff systems">Stiff systems</a>
|
|
</h3></div></div></div>
|
|
<p>
|
|
An important class of ordinary differential equations are so called stiff
|
|
system which are characterized by two or more time scales of different order.
|
|
Examples of such systems are found in chemical systems where reaction rates
|
|
of individual sub-reaction might differ over large ranges, for example:
|
|
</p>
|
|
<p>
|
|
<span class="emphasis"><em>d S<sub>​1</sub> / dt = - 101 S<sub>​2</sub> - 100 S<sub>​1</sub></em></span>
|
|
</p>
|
|
<p>
|
|
<span class="emphasis"><em>d S<sub>​2</sub> / dt = S<sub>​1</sub></em></span>
|
|
</p>
|
|
<p>
|
|
To solve stiff systems efficiently using numerics the Jacobian
|
|
</p>
|
|
<p>
|
|
<span class="emphasis"><em>J = d f<sub>​i</sub> / d x<sub>​j</sub></em></span>
|
|
</p>
|
|
<p>
|
|
is needed. Here is the definition of the above example
|
|
</p>
|
|
<p>
|
|
</p>
|
|
<pre class="programlisting"><span class="keyword">typedef</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">numeric</span><span class="special">::</span><span class="identifier">ublas</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span> <span class="keyword">double</span> <span class="special">></span> <span class="identifier">vector_type</span><span class="special">;</span>
|
|
<span class="keyword">typedef</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">numeric</span><span class="special">::</span><span class="identifier">ublas</span><span class="special">::</span><span class="identifier">matrix</span><span class="special"><</span> <span class="keyword">double</span> <span class="special">></span> <span class="identifier">matrix_type</span><span class="special">;</span>
|
|
|
|
<span class="keyword">struct</span> <span class="identifier">stiff_system</span>
|
|
<span class="special">{</span>
|
|
<span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span> <span class="keyword">const</span> <span class="identifier">vector_type</span> <span class="special">&</span><span class="identifier">x</span> <span class="special">,</span> <span class="identifier">vector_type</span> <span class="special">&</span><span class="identifier">dxdt</span> <span class="special">,</span> <span class="keyword">double</span> <span class="comment">/* t */</span> <span class="special">)</span>
|
|
<span class="special">{</span>
|
|
<span class="identifier">dxdt</span><span class="special">[</span> <span class="number">0</span> <span class="special">]</span> <span class="special">=</span> <span class="special">-</span><span class="number">101.0</span> <span class="special">*</span> <span class="identifier">x</span><span class="special">[</span> <span class="number">0</span> <span class="special">]</span> <span class="special">-</span> <span class="number">100.0</span> <span class="special">*</span> <span class="identifier">x</span><span class="special">[</span> <span class="number">1</span> <span class="special">];</span>
|
|
<span class="identifier">dxdt</span><span class="special">[</span> <span class="number">1</span> <span class="special">]</span> <span class="special">=</span> <span class="identifier">x</span><span class="special">[</span> <span class="number">0</span> <span class="special">];</span>
|
|
<span class="special">}</span>
|
|
<span class="special">};</span>
|
|
|
|
<span class="keyword">struct</span> <span class="identifier">stiff_system_jacobi</span>
|
|
<span class="special">{</span>
|
|
<span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span> <span class="keyword">const</span> <span class="identifier">vector_type</span> <span class="special">&</span> <span class="comment">/* x */</span> <span class="special">,</span> <span class="identifier">matrix_type</span> <span class="special">&</span><span class="identifier">J</span> <span class="special">,</span> <span class="keyword">const</span> <span class="keyword">double</span> <span class="special">&</span> <span class="comment">/* t */</span> <span class="special">,</span> <span class="identifier">vector_type</span> <span class="special">&</span><span class="identifier">dfdt</span> <span class="special">)</span>
|
|
<span class="special">{</span>
|
|
<span class="identifier">J</span><span class="special">(</span> <span class="number">0</span> <span class="special">,</span> <span class="number">0</span> <span class="special">)</span> <span class="special">=</span> <span class="special">-</span><span class="number">101.0</span><span class="special">;</span>
|
|
<span class="identifier">J</span><span class="special">(</span> <span class="number">0</span> <span class="special">,</span> <span class="number">1</span> <span class="special">)</span> <span class="special">=</span> <span class="special">-</span><span class="number">100.0</span><span class="special">;</span>
|
|
<span class="identifier">J</span><span class="special">(</span> <span class="number">1</span> <span class="special">,</span> <span class="number">0</span> <span class="special">)</span> <span class="special">=</span> <span class="number">1.0</span><span class="special">;</span>
|
|
<span class="identifier">J</span><span class="special">(</span> <span class="number">1</span> <span class="special">,</span> <span class="number">1</span> <span class="special">)</span> <span class="special">=</span> <span class="number">0.0</span><span class="special">;</span>
|
|
<span class="identifier">dfdt</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="number">0.0</span><span class="special">;</span>
|
|
<span class="identifier">dfdt</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="number">0.0</span><span class="special">;</span>
|
|
<span class="special">}</span>
|
|
<span class="special">};</span>
|
|
</pre>
|
|
<p>
|
|
</p>
|
|
<p>
|
|
The state type has to be a <code class="computeroutput"><span class="identifier">ublas</span><span class="special">::</span><span class="identifier">vector</span></code>
|
|
and the matrix type must by a <code class="computeroutput"><span class="identifier">ublas</span><span class="special">::</span><span class="identifier">matrix</span></code>
|
|
since the stiff integrator only accepts these types. However, you might want
|
|
use non-stiff intgrators on this system, too - we will do so later for demonstration.
|
|
Therefore we want to use the same function also with other state_types, realized
|
|
by templatizing the <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code>:
|
|
</p>
|
|
<p>
|
|
</p>
|
|
<pre class="programlisting"><span class="keyword">typedef</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">numeric</span><span class="special">::</span><span class="identifier">ublas</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span> <span class="keyword">double</span> <span class="special">></span> <span class="identifier">vector_type</span><span class="special">;</span>
|
|
<span class="keyword">typedef</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">numeric</span><span class="special">::</span><span class="identifier">ublas</span><span class="special">::</span><span class="identifier">matrix</span><span class="special"><</span> <span class="keyword">double</span> <span class="special">></span> <span class="identifier">matrix_type</span><span class="special">;</span>
|
|
|
|
<span class="keyword">struct</span> <span class="identifier">stiff_system</span>
|
|
<span class="special">{</span>
|
|
<span class="keyword">template</span><span class="special"><</span> <span class="keyword">class</span> <span class="identifier">State</span> <span class="special">></span>
|
|
<span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span> <span class="keyword">const</span> <span class="identifier">State</span> <span class="special">&</span><span class="identifier">x</span> <span class="special">,</span> <span class="identifier">State</span> <span class="special">&</span><span class="identifier">dxdt</span> <span class="special">,</span> <span class="keyword">double</span> <span class="identifier">t</span> <span class="special">)</span>
|
|
<span class="special">{</span>
|
|
<span class="special">...</span>
|
|
<span class="special">}</span>
|
|
<span class="special">};</span>
|
|
|
|
<span class="keyword">struct</span> <span class="identifier">stiff_system_jacobi</span>
|
|
<span class="special">{</span>
|
|
<span class="keyword">template</span><span class="special"><</span> <span class="keyword">class</span> <span class="identifier">State</span> <span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Matrix</span> <span class="special">></span>
|
|
<span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span> <span class="keyword">const</span> <span class="identifier">State</span> <span class="special">&</span><span class="identifier">x</span> <span class="special">,</span> <span class="identifier">Matrix</span> <span class="special">&</span><span class="identifier">J</span> <span class="special">,</span> <span class="keyword">const</span> <span class="keyword">double</span> <span class="special">&</span><span class="identifier">t</span> <span class="special">,</span> <span class="identifier">State</span> <span class="special">&</span><span class="identifier">dfdt</span> <span class="special">)</span>
|
|
<span class="special">{</span>
|
|
<span class="special">...</span>
|
|
<span class="special">}</span>
|
|
<span class="special">};</span>
|
|
</pre>
|
|
<p>
|
|
</p>
|
|
<p>
|
|
Now you can use <code class="computeroutput"><span class="identifier">stiff_system</span></code>
|
|
in combination with <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span></code> or <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">array</span></code>.
|
|
In the example the explicit time derivative of <span class="emphasis"><em>f(x,t)</em></span>
|
|
is introduced separately in the Jacobian. If <span class="emphasis"><em>df / dt = 0</em></span>
|
|
simply fill <code class="computeroutput"><span class="identifier">dfdt</span></code> with zeros.
|
|
</p>
|
|
<p>
|
|
A well know solver for stiff systems is the so called Rosenbrock method.
|
|
It has a step size control and dense output facilities and can be used like
|
|
all the other stepper:
|
|
</p>
|
|
<p>
|
|
</p>
|
|
<pre class="programlisting"><span class="identifier">vector_type</span> <span class="identifier">x</span><span class="special">(</span> <span class="number">2</span> <span class="special">,</span> <span class="number">1.0</span> <span class="special">);</span>
|
|
|
|
<span class="identifier">size_t</span> <span class="identifier">num_of_steps</span> <span class="special">=</span> <span class="identifier">integrate_const</span><span class="special">(</span> <span class="identifier">make_dense_output</span><span class="special"><</span> <span class="identifier">rosenbrock4</span><span class="special"><</span> <span class="keyword">double</span> <span class="special">></span> <span class="special">>(</span> <span class="number">1.0e-6</span> <span class="special">,</span> <span class="number">1.0e-6</span> <span class="special">)</span> <span class="special">,</span>
|
|
<span class="identifier">make_pair</span><span class="special">(</span> <span class="identifier">stiff_system</span><span class="special">()</span> <span class="special">,</span> <span class="identifier">stiff_system_jacobi</span><span class="special">()</span> <span class="special">)</span> <span class="special">,</span>
|
|
<span class="identifier">x</span> <span class="special">,</span> <span class="number">0.0</span> <span class="special">,</span> <span class="number">50.0</span> <span class="special">,</span> <span class="number">0.01</span> <span class="special">,</span>
|
|
<span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">phoenix</span><span class="special">::</span><span class="identifier">arg_names</span><span class="special">::</span><span class="identifier">arg2</span> <span class="special"><<</span> <span class="string">" "</span> <span class="special"><<</span> <span class="identifier">phoenix</span><span class="special">::</span><span class="identifier">arg_names</span><span class="special">::</span><span class="identifier">arg1</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special"><<</span> <span class="string">"\n"</span> <span class="special">);</span>
|
|
</pre>
|
|
<p>
|
|
</p>
|
|
<p>
|
|
During the integration 71 steps have been done. Comparing to a classical
|
|
Runge-Kutta solver this is a very good result. For example the Dormand-Prince
|
|
5 method with step size control and dense output yields 1531 steps.
|
|
</p>
|
|
<p>
|
|
</p>
|
|
<pre class="programlisting"><span class="identifier">vector_type</span> <span class="identifier">x2</span><span class="special">(</span> <span class="number">2</span> <span class="special">,</span> <span class="number">1.0</span> <span class="special">);</span>
|
|
|
|
<span class="identifier">size_t</span> <span class="identifier">num_of_steps2</span> <span class="special">=</span> <span class="identifier">integrate_const</span><span class="special">(</span> <span class="identifier">make_dense_output</span><span class="special"><</span> <span class="identifier">runge_kutta_dopri5</span><span class="special"><</span> <span class="identifier">vector_type</span> <span class="special">></span> <span class="special">>(</span> <span class="number">1.0e-6</span> <span class="special">,</span> <span class="number">1.0e-6</span> <span class="special">)</span> <span class="special">,</span>
|
|
<span class="identifier">stiff_system</span><span class="special">()</span> <span class="special">,</span> <span class="identifier">x2</span> <span class="special">,</span> <span class="number">0.0</span> <span class="special">,</span> <span class="number">50.0</span> <span class="special">,</span> <span class="number">0.01</span> <span class="special">,</span>
|
|
<span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">phoenix</span><span class="special">::</span><span class="identifier">arg_names</span><span class="special">::</span><span class="identifier">arg2</span> <span class="special"><<</span> <span class="string">" "</span> <span class="special"><<</span> <span class="identifier">phoenix</span><span class="special">::</span><span class="identifier">arg_names</span><span class="special">::</span><span class="identifier">arg1</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special"><<</span> <span class="string">"\n"</span> <span class="special">);</span>
|
|
</pre>
|
|
<p>
|
|
</p>
|
|
<p>
|
|
Note, that we have used <a href="http://www.boost.org/doc/libs/1_46_1/libs/spirit/phoenix/doc/html/index.html" target="_top">Boost.Phoenix</a>,
|
|
a great functional programming library to create and compose the observer.
|
|
</p>
|
|
<p>
|
|
The full example can be found here: <a href="https://github.com/headmyshoulder/odeint-v2/tree/master/libs/numeric/odeint/examples/stiff_system.cpp" target="_top">stiff_system.cpp</a>
|
|
</p>
|
|
</div>
|
|
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
|
|
<td align="left"></td>
|
|
<td align="right"><div class="copyright-footer">Copyright © 2009-2011 Karsten Ahnert
|
|
and Mario Mulansky<p>
|
|
Distributed under the Boost Software License, Version 1.0. (See accompanying
|
|
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
|
|
</p>
|
|
</div></td>
|
|
</tr></table>
|
|
<hr>
|
|
<div class="spirit-nav">
|
|
<a accesskey="p" href="chaotic_systems_and_lyapunov_exponents.html"><img src="../../images/prev.png" alt="Prev"></a><a accesskey="u" href="../tutorial.html"><img src="../../images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../images/home.png" alt="Home"></a><a accesskey="n" href="special_topics.html"><img src="../../images/next.png" alt="Next"></a>
|
|
</div>
|
|
</body>
|
|
</html>
|