2
0
mirror of https://github.com/boostorg/odeint.git synced 2026-01-26 18:52:20 +00:00
Files
odeint/doc/boost_numeric_odeint/getting_started/short_example.html
2012-06-26 07:09:51 +02:00

203 lines
19 KiB
HTML

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Short Example</title>
<link rel="stylesheet" href="../../boostbook.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.75.2">
<link rel="home" href="../../index.html" title="Chapter&#160;1.&#160;Boost.Numeric.Odeint">
<link rel="up" href="../getting_started.html" title="Getting started">
<link rel="prev" href="usage__compilation__headers.html" title="Usage, Compilation, Headers">
<link rel="next" href="../tutorial.html" title="Tutorial">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr><td valign="top"></td></tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="usage__compilation__headers.html"><img src="../../images/prev.png" alt="Prev"></a><a accesskey="u" href="../getting_started.html"><img src="../../images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../images/home.png" alt="Home"></a><a accesskey="n" href="../tutorial.html"><img src="../../images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h3 class="title">
<a name="boost_numeric_odeint.getting_started.short_example"></a><a class="link" href="short_example.html" title="Short Example">Short
Example</a>
</h3></div></div></div>
<p>
Imaging, you want to numerically integrate a harmonic oscillator with friction.
The equations of motion are given by <span class="emphasis"><em>x'' = -x + &#947; x'</em></span>.
Odeint only deals with first order ODEs that have no higher derivatives than
x' involved. However, any higher order ODE can be transformed to a system
of first order ODEs by introducing the new variables <span class="emphasis"><em>q=x</em></span>
and <span class="emphasis"><em>p=x'</em></span> such that <span class="emphasis"><em>w=(q,p)</em></span>. To
apply numerical integration one first has to design the right hand side of
the equation <span class="emphasis"><em>w' = f(w) = (p,-q+&#947; p)</em></span>:
</p>
<p>
</p>
<pre class="programlisting"><span class="comment">/* The type of container used to hold the state vector */</span>
<span class="keyword">typedef</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">&gt;</span> <span class="identifier">state_type</span><span class="special">;</span>
<span class="keyword">const</span> <span class="keyword">double</span> <span class="identifier">gam</span> <span class="special">=</span> <span class="number">0.15</span><span class="special">;</span>
<span class="comment">/* The rhs of x' = f(x) */</span>
<span class="keyword">void</span> <span class="identifier">harmonic_oscillator</span><span class="special">(</span> <span class="keyword">const</span> <span class="identifier">state_type</span> <span class="special">&amp;</span><span class="identifier">x</span> <span class="special">,</span> <span class="identifier">state_type</span> <span class="special">&amp;</span><span class="identifier">dxdt</span> <span class="special">,</span> <span class="keyword">const</span> <span class="keyword">double</span> <span class="comment">/* t */</span> <span class="special">)</span>
<span class="special">{</span>
<span class="identifier">dxdt</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">x</span><span class="special">[</span><span class="number">1</span><span class="special">];</span>
<span class="identifier">dxdt</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="special">-</span><span class="identifier">x</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">-</span> <span class="identifier">gam</span><span class="special">*</span><span class="identifier">x</span><span class="special">[</span><span class="number">1</span><span class="special">];</span>
<span class="special">}</span>
</pre>
<p>
</p>
<p>
Here we chose <code class="computeroutput"><span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span></code>
as the state type, but others are also possible, for example <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">,</span><span class="number">2</span><span class="special">&gt;</span></code>. odeint is designed in such a way that
you can easily use your own state types. Next, the ODE is defined which is
in this case a simple function calculating <span class="emphasis"><em>f(x)'</em></span>. The
parameter signature of this function is crucial: the integration methods
will always call them in the form <code class="computeroutput"><span class="identifier">f</span><span class="special">(</span><span class="identifier">x</span><span class="special">,</span>
<span class="identifier">dxdt</span><span class="special">,</span>
<span class="identifier">t</span><span class="special">)</span></code>
(there are exceptions for some special routines). So, even if there is no
explicit time dependence, one has to define <code class="computeroutput"><span class="identifier">t</span></code>
as a function parameter.
</p>
<p>
Now, we have to define the initial state from which the integration should
start:
</p>
<p>
</p>
<pre class="programlisting"><span class="identifier">state_type</span> <span class="identifier">x</span><span class="special">(</span><span class="number">2</span><span class="special">);</span>
<span class="identifier">x</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="number">1.0</span><span class="special">;</span> <span class="comment">// start at x=1.0, p=0.0</span>
<span class="identifier">x</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="number">0.0</span><span class="special">;</span>
</pre>
<p>
</p>
<p>
For the integration itself we'll use the <code class="computeroutput">integrate</code>
function, which is a convenient way to get quick results. It is based on
the error-controlled <code class="computeroutput">runge_kutta_rk5_ck</code>
stepper (5th order) and uses adaptive step-size.
</p>
<p>
</p>
<pre class="programlisting"><span class="identifier">size_t</span> <span class="identifier">steps</span> <span class="special">=</span> <span class="identifier">integrate</span><span class="special">(</span> <span class="identifier">harmonic_oscillator</span> <span class="special">,</span>
<span class="identifier">x</span> <span class="special">,</span> <span class="number">0.0</span> <span class="special">,</span> <span class="number">10.0</span> <span class="special">,</span> <span class="number">0.1</span> <span class="special">);</span>
</pre>
<p>
</p>
<p>
The integrate function expects as parameters the rhs of the ode as defined
above, the initial state <code class="computeroutput"><span class="identifier">x</span></code>,
the start-and end-time of the integration as well as the initial time step=size.
Note, that <code class="computeroutput">integrate</code>
uses an adaptive step-size during the integration steps so the time points
will not be equally spaced. The integration returns the number of steps that
were applied and updates x which is set to the approximate solution of the
ODE at the end of integration.
</p>
<p>
It is, of course, also possible to represent the ode system as a class. The
rhs must then be implemented as a functor having defined the ()-operator:
</p>
<p>
</p>
<pre class="programlisting"><span class="comment">/* The rhs of x' = f(x) defined as a class */</span>
<span class="keyword">class</span> <span class="identifier">harm_osc</span> <span class="special">{</span>
<span class="keyword">double</span> <span class="identifier">m_gam</span><span class="special">;</span>
<span class="keyword">public</span><span class="special">:</span>
<span class="identifier">harm_osc</span><span class="special">(</span> <span class="keyword">double</span> <span class="identifier">gam</span> <span class="special">)</span> <span class="special">:</span> <span class="identifier">m_gam</span><span class="special">(</span><span class="identifier">gam</span><span class="special">)</span> <span class="special">{</span> <span class="special">}</span>
<span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()</span> <span class="special">(</span> <span class="keyword">const</span> <span class="identifier">state_type</span> <span class="special">&amp;</span><span class="identifier">x</span> <span class="special">,</span> <span class="identifier">state_type</span> <span class="special">&amp;</span><span class="identifier">dxdt</span> <span class="special">,</span> <span class="keyword">const</span> <span class="keyword">double</span> <span class="comment">/* t */</span> <span class="special">)</span>
<span class="special">{</span>
<span class="identifier">dxdt</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">x</span><span class="special">[</span><span class="number">1</span><span class="special">];</span>
<span class="identifier">dxdt</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="special">-</span><span class="identifier">x</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">-</span> <span class="identifier">m_gam</span><span class="special">*</span><span class="identifier">x</span><span class="special">[</span><span class="number">1</span><span class="special">];</span>
<span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
</p>
<p>
which can be used via
</p>
<p>
</p>
<pre class="programlisting"><span class="identifier">harm_osc</span> <span class="identifier">ho</span><span class="special">(</span><span class="number">0.15</span><span class="special">);</span>
<span class="identifier">steps</span> <span class="special">=</span> <span class="identifier">integrate</span><span class="special">(</span> <span class="identifier">ho</span> <span class="special">,</span>
<span class="identifier">x</span> <span class="special">,</span> <span class="number">0.0</span> <span class="special">,</span> <span class="number">10.0</span> <span class="special">,</span> <span class="number">0.1</span> <span class="special">);</span>
</pre>
<p>
</p>
<p>
You surely have already noticed that during the integration a lot of steps
had to be done. You might wonder if you could access them do observe the
solution during the iteration. Yes, this is possible, of course. All you
have to do is to provide a reasonable observer. An example is
</p>
<p>
</p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">push_back_state_and_time</span>
<span class="special">{</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span> <span class="identifier">state_type</span> <span class="special">&gt;&amp;</span> <span class="identifier">m_states</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">&gt;&amp;</span> <span class="identifier">m_times</span><span class="special">;</span>
<span class="identifier">push_back_state_and_time</span><span class="special">(</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span> <span class="identifier">state_type</span> <span class="special">&gt;</span> <span class="special">&amp;</span><span class="identifier">states</span> <span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">&gt;</span> <span class="special">&amp;</span><span class="identifier">times</span> <span class="special">)</span>
<span class="special">:</span> <span class="identifier">m_states</span><span class="special">(</span> <span class="identifier">states</span> <span class="special">)</span> <span class="special">,</span> <span class="identifier">m_times</span><span class="special">(</span> <span class="identifier">times</span> <span class="special">)</span> <span class="special">{</span> <span class="special">}</span>
<span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span> <span class="keyword">const</span> <span class="identifier">state_type</span> <span class="special">&amp;</span><span class="identifier">x</span> <span class="special">,</span> <span class="keyword">double</span> <span class="identifier">t</span> <span class="special">)</span>
<span class="special">{</span>
<span class="identifier">m_states</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span> <span class="identifier">x</span> <span class="special">);</span>
<span class="identifier">m_times</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span> <span class="identifier">t</span> <span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
</p>
<p>
which stores the intermediate steps in a container. Note, the argument structure
of the ()-operator: odeint calls the observer exactly in this way, providing
the current state and time. Now, you only have to pass this container to
the integration function:
</p>
<p>
</p>
<pre class="programlisting"><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">state_type</span><span class="special">&gt;</span> <span class="identifier">x_vec</span><span class="special">;</span>
<span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">times</span><span class="special">;</span>
<span class="identifier">steps</span> <span class="special">=</span> <span class="identifier">integrate</span><span class="special">(</span> <span class="identifier">harmonic_oscillator</span> <span class="special">,</span>
<span class="identifier">x</span> <span class="special">,</span> <span class="number">0.0</span> <span class="special">,</span> <span class="number">10.0</span> <span class="special">,</span> <span class="number">0.1</span> <span class="special">,</span>
<span class="identifier">push_back_state_and_time</span><span class="special">(</span> <span class="identifier">x_vec</span> <span class="special">,</span> <span class="identifier">times</span> <span class="special">)</span> <span class="special">);</span>
<span class="comment">/* output */</span>
<span class="keyword">for</span><span class="special">(</span> <span class="identifier">size_t</span> <span class="identifier">i</span><span class="special">=</span><span class="number">0</span><span class="special">;</span> <span class="identifier">i</span><span class="special">&lt;=</span><span class="identifier">steps</span><span class="special">;</span> <span class="identifier">i</span><span class="special">++</span> <span class="special">)</span>
<span class="special">{</span>
<span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">times</span><span class="special">[</span><span class="identifier">i</span><span class="special">]</span> <span class="special">&lt;&lt;</span> <span class="char">'\t'</span> <span class="special">&lt;&lt;</span> <span class="identifier">x_vec</span><span class="special">[</span><span class="identifier">i</span><span class="special">][</span><span class="number">0</span><span class="special">]</span> <span class="special">&lt;&lt;</span> <span class="char">'\t'</span> <span class="special">&lt;&lt;</span> <span class="identifier">x_vec</span><span class="special">[</span><span class="identifier">i</span><span class="special">][</span><span class="number">1</span><span class="special">]</span> <span class="special">&lt;&lt;</span> <span class="char">'\n'</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
</p>
<p>
That is all. Of course, you can use functional libraries like <a href="http://www.boost.org/doc/libs/release/doc/html/lambda.html" target="_top">Boost.Lambda</a>
or <a href="http://www.boost.org/doc/libs/1_46_1/libs/spirit/phoenix/doc/html/index.html" target="_top">Boost.Phoenix</a>
to ease the creation of observer functions.
</p>
<p>
The full cpp file for this example can be found here: <a href="../../../../examples/harmonic_oscillator.cpp" target="_top">../../examples/harmonic_oscillator.cpp</a>
</p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright &#169; 2009-2011 Karsten Ahnert
and Mario Mulansky<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="usage__compilation__headers.html"><img src="../../images/prev.png" alt="Prev"></a><a accesskey="u" href="../getting_started.html"><img src="../../images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../images/home.png" alt="Home"></a><a accesskey="n" href="../tutorial.html"><img src="../../images/next.png" alt="Next"></a>
</div>
</body>
</html>