Files
multiprecision/test/test_cpp_double_float_constructors.cpp
2021-07-14 13:30:04 +02:00

237 lines
8.3 KiB
C++

///////////////////////////////////////////////////////////////////////////////
// Copyright 2021 Fahad Syed.
// Copyright 2021 Christopher Kormanyos.
// Copyright 2021 Janek Kozicki.
// Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// Constructor tests for cpp_double_float<>
#include <boost/multiprecision/cpp_double_float.hpp>
#include <boost/multiprecision/cpp_bin_float.hpp>
#include <iostream>
#include <cstdlib>
#include <random>
#include <numeric>
namespace test_cpp_double_constructors {
template <typename FloatingPointType,
typename std::enable_if<std::is_floating_point<FloatingPointType>::value, bool>::type = true>
FloatingPointType uniform_real()
{
static std::random_device rd;
static std::mt19937 gen(rd());
static std::uniform_real_distribution<FloatingPointType> dis(0.0, 1.0);
return dis(gen);
}
template <typename NumericType,
typename std::enable_if<std::is_integral<NumericType>::value, bool>::type = true>
NumericType uniform_integral_number()
{
NumericType out = 0;
for (int i = 0; i < sizeof(NumericType); ++i)
out = (out << 8) + static_cast<NumericType>(std::round(256.0 * uniform_real<float>()));
return out;
}
template <typename NumericType,
typename std::enable_if<std::is_integral<NumericType>::value && !std::is_floating_point<NumericType>::value, bool>::type = true>
NumericType get_rand()
{
return uniform_integral_number<NumericType>();
}
template <typename FloatingPointType,
typename std::enable_if<std::is_floating_point<FloatingPointType>::value, bool>::type = true>
FloatingPointType get_rand()
{
return uniform_real<FloatingPointType>();
}
template <typename FloatingPointType>
boost::multiprecision::backends::cpp_double_float<typename FloatingPointType::float_type> get_rand()
{
using float_type = typename FloatingPointType::float_type;
return boost::multiprecision::backends::cpp_double_float<float_type>(uniform_real<float_type>()) * boost::multiprecision::backends::cpp_double_float<float_type>(uniform_real<float_type>());
}
template <typename FloatingPointType, typename NumericType, typename std::enable_if<std::is_integral<NumericType>::value>::type const* = nullptr>
bool test_constructor()
{
bool result_is_ok = true;
constexpr int Trials = 50000;
std::cout << "Testing constructor for ";
std::cout.width(30);
std::cout << typeid(NumericType).name() << "... ";
using double_float_t = boost::multiprecision::backends::cpp_double_float<FloatingPointType>;
for (int i = 0; i < Trials; ++i)
{
NumericType n = get_rand<NumericType>();
double_float_t d(n);
typename double_float_t::rep_type rep(d.rep());
double_float_t::normalize_pair(rep);
// Check if representation of the cpp_double_float is not normalized
if (rep != d.rep())
{
std::cerr << "[FAILED]\nabnormal representation for " << typeid(NumericType).name() << " = " << n
<< " (cpp_double_float<" << typeid(FloatingPointType).name() << "> = " << d.get_raw_str() << ")" << std::endl;
result_is_ok = false;
break;
}
NumericType n_prime(n);
// Check if value is accurately represented
constexpr int NumericTypeBits = std::numeric_limits<NumericType>::digits;
constexpr int MaxRepresentableBits = std::numeric_limits<double_float_t>::digits;
// Round correctly if the integral type has more precision than what can be represented
if (NumericTypeBits > MaxRepresentableBits)
{
const NumericType RoundedBitsMask = (NumericType(1) << (NumericTypeBits - MaxRepresentableBits)) - 1;
const NumericType RoundedMargin = (RoundedBitsMask + 1) >> 1;
n_prime >>= NumericTypeBits - MaxRepresentableBits;
if ((n & RoundedBitsMask) > RoundedMargin)
n_prime |= 1;
else if ((n & RoundedBitsMask) < RoundedMargin)
n_prime &= ~NumericType(1);
n_prime <<= NumericTypeBits - MaxRepresentableBits;
}
if (std::abs(signed(n_prime - n)) < std::abs(signed(static_cast<NumericType>(d) - n)))
{
std::cerr << "[FAILED]\nn = 0x" << std::hex << n << " | cpp_double_float<" << typeid(FloatingPointType).name()
<< "> = 0x" << std::hex << static_cast<NumericType>(d)
<< " (expected 0x" << std::hex << n_prime << ")"
<< std::endl;
result_is_ok = false;
break;
}
}
std::cout << "ok (" << Trials << " cases tested)" << std::endl;
return result_is_ok;
}
template <typename FloatingPointType, typename OtherFloatType, typename std::enable_if<!std::is_integral<OtherFloatType>::value>::type const* = nullptr>
bool test_constructor()
{
bool result_is_ok = true;
constexpr int Trials = 50000;
std::string type_name = typeid(OtherFloatType).name();
size_t idx;
if ((idx = type_name.rfind(":")) != std::string::npos)
type_name = type_name.substr(idx + 1, type_name.size());
std::cout << "Testing constructor for ";
std::cout.width(30);
std::cout << type_name << "... ";
using double_float_t = boost::multiprecision::backends::cpp_double_float<FloatingPointType>;
for (int i = 0; i < Trials; ++i)
{
OtherFloatType n = get_rand<OtherFloatType>();
double_float_t d(n);
typename double_float_t::rep_type rep(d.rep());
double_float_t::normalize_pair(rep);
// Check if representation of the cpp_double_float is not normalized
if (rep != d.rep())
{
std::cerr << "[FAILED]\nabnormal representation for " << typeid(OtherFloatType).name() << " = " << n
<< " (cpp_double_float<" << typeid(FloatingPointType).name() << "> = " << d.get_raw_str() << ")" << std::endl;
result_is_ok = false;
break;
}
// Check if the binary digits match (work in progress...)
/*const int DigitsToMatch = std::min(std::numeric_limits<double_float_t>::digits, std::numeric_limits<OtherFloatType>::digits);
int digits_matched = 0;
OtherFloatType n_prime(n);
double_float_t d_prime(d);
while (n_prime > 1)
{
n_prime /= 2;
d_prime /= 2;
}*/
}
std::cout << "ok (" << Trials << " cases tested)" << std::endl;
return result_is_ok;
}
// Test compilation, constructors, basic operatory
template <typename FloatingPointType>
bool test_constructors()
{
using double_float_t = boost::multiprecision::backends::cpp_double_float<FloatingPointType>;
double_float_t a, b;
std::cout << "Testing cpp_double_float< " << typeid(FloatingPointType).name() << " >...\n==="
<< std::endl;
bool result_is_ok = true;
result_is_ok &= test_constructor<FloatingPointType, long long int>();
result_is_ok &= test_constructor<FloatingPointType, unsigned long long int>();
result_is_ok &= test_constructor<FloatingPointType, long int>();
result_is_ok &= test_constructor<FloatingPointType, unsigned long int>();
result_is_ok &= test_constructor<FloatingPointType, short int>();
result_is_ok &= test_constructor<FloatingPointType, unsigned short int>();
result_is_ok &= test_constructor<FloatingPointType, signed char>();
result_is_ok &= test_constructor<FloatingPointType, unsigned char>();
result_is_ok &= test_constructor<FloatingPointType, float>();
result_is_ok &= test_constructor<FloatingPointType, double>();
result_is_ok &= test_constructor<FloatingPointType, float>();
result_is_ok &= test_constructor<FloatingPointType, boost::multiprecision::backends::cpp_double_float<float>>();
result_is_ok &= test_constructor<FloatingPointType, boost::multiprecision::backends::cpp_double_float<double>>();
if (result_is_ok)
std::cout << "PASSED all tests";
else
std::cout << "FAILED some test(s)";
std::cout << std::endl
<< std::endl;
return result_is_ok;
}
} // namespace test_cpp_double_constructors
int main()
{
const bool result_float_is_ok = test_cpp_double_constructors::test_constructors<float>();
const bool result_double_is_ok = test_cpp_double_constructors::test_constructors<double>();
const bool result_is_ok = (result_float_is_ok && result_double_is_ok);
return (result_is_ok ? 0 : -1);
}