Files
multiprecision/test/test_cpp_double_float_arithmetic.cpp
2021-07-25 22:20:05 +02:00

231 lines
8.5 KiB
C++

///////////////////////////////////////////////////////////////////////////////
// Copyright 2021 Fahad Syed.
// Copyright 2021 Christopher Kormanyos.
// Copyright 2021 Janek Kozicki.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// Test for correctness of arithmetic operators of cpp_double_float<>
// cd /mnt/c/Users/User/Documents/Ks/PC_Software/Test
// g++ -O3 -Wall -march=native -std=c++11 -I/mnt/c/MyGitRepos/BoostGSoC21_multiprecision/include -I/mnt/c/boost/boost_1_76_0 test.cpp -o test_double_float.exe
// TBD: Handle interaction with Boost's wrap of libquadmath __float128.
// g++ -O3 -Wall -march=native -std=gnu++11 -I/mnt/c/MyGitRepos/BoostGSoC21_multiprecision/include -I/mnt/c/boost/boost_1_76_0 -DBOOST_MATH_USE_FLOAT128 test.cpp -lquadmath -o test_double_float.exe
#include <ctime>
#include <iomanip>
#include <iostream>
#include <random>
#include <string>
#include <vector>
#include <boost/config.hpp>
#include <boost/multiprecision/number.hpp>
#ifdef BOOST_MATH_USE_FLOAT128
#include <boost/multiprecision/float128.hpp>
#endif
#include <boost/multiprecision/cpp_double_float.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
#include <boost/random/uniform_real_distribution.hpp>
#include <boost/core/demangle.hpp>
namespace test_arithmetic_cpp_double_float {
template <typename FloatingPointType,
typename std::enable_if<( boost::multiprecision::backends::detail::is_floating_point_or_float128<FloatingPointType>::value == true), bool>::type = true>
FloatingPointType uniform_real()
{
using distribution_type = boost::random::uniform_real_distribution<FloatingPointType>;
static unsigned long seed_scaler = 0U;
static std::random_device rd;
static std::mt19937 gen(rd());
static distribution_type dis(0.0, 1.0);
if((seed_scaler % 0x100000UL) == 0U)
{
gen.seed(static_cast<typename std::mt19937::result_type>(std::clock()));
}
return dis(gen);
}
int rand_in_range(int a, int b)
{
return a + int(float(b - a) * uniform_real<float>());
}
template <typename FloatingPointType,
typename std::enable_if<(boost::multiprecision::backends::detail::is_floating_point_or_float128<FloatingPointType>::value == true), bool>::type = true>
FloatingPointType uniform_rand()
{
return uniform_real<FloatingPointType>();
}
template <typename CompositeFloatType,
typename std::enable_if<(boost::multiprecision::backends::detail::is_floating_point_or_float128<CompositeFloatType>::value == false), bool>::type = true>
CompositeFloatType uniform_rand()
{
using float_type = typename CompositeFloatType::backend_type::float_type;
return CompositeFloatType(uniform_real<float_type>())
* CompositeFloatType(uniform_real<float_type>());
}
template <typename FloatingPointType>
typename std::enable_if<( boost::multiprecision::backends::detail::is_floating_point_or_float128<FloatingPointType>::value == true), FloatingPointType>::type
log_rand()
{
if (uniform_real<float>() < (1. / 100.))
return 0; // throw in a few zeroes
using std::ldexp;
using boost::multiprecision::ldexp;
FloatingPointType ret = ldexp(uniform_real<FloatingPointType>(), rand_in_range(std::numeric_limits<FloatingPointType>::min_exponent, std::numeric_limits<FloatingPointType>::max_exponent));
using std::fmax;
return fmax(ret, std::numeric_limits<FloatingPointType>::epsilon());
}
template <typename CompositeFloatType,
typename std::enable_if<(boost::multiprecision::backends::detail::is_floating_point_or_float128<CompositeFloatType>::value == false), bool>::type = true>
CompositeFloatType log_rand()
{
using float_type = typename CompositeFloatType::backend_type::float_type;
CompositeFloatType
a
(
uniform_rand<CompositeFloatType>()
+ float_type(1)
);
a *= log_rand<float_type>();
return a;
}
template <typename ConstructionType, typename FloatingPointType, typename std::enable_if<std::numeric_limits<FloatingPointType>::is_iec559>::type const* = nullptr>
ConstructionType construct_from(FloatingPointType f)
{
return ConstructionType(f);
}
template <typename ConstructionType, typename FloatingPointType, typename std::enable_if<!std::numeric_limits<FloatingPointType>::is_iec559>::type const* = nullptr>
ConstructionType construct_from(FloatingPointType f)
{
const ConstructionType ct_x(ConstructionType::canonical_value(f).first());
const ConstructionType ct_y(ConstructionType::canonical_value(f).second());
const ConstructionType ct = ct_x + ct_y;
return ct;
}
template <typename FloatingPointType>
bool test_op(char op, const unsigned count = 0x20000U)
{
using naked_double_float_type = FloatingPointType;
constexpr int d10 = std::numeric_limits<naked_double_float_type>::digits10 * 2 + 1;
using control_float_type = boost::multiprecision::number<boost::multiprecision::cpp_dec_float<d10>, boost::multiprecision::et_off>;
using boost::multiprecision::ldexp;
const control_float_type MaxError = ldexp(control_float_type(1), -std::numeric_limits<naked_double_float_type>::digits + 1);
std::cout << "testing operator" << op << " (accuracy = " << std::numeric_limits<naked_double_float_type>::digits << " bits)...";
for (unsigned i = 0U; i < count; ++i)
{
naked_double_float_type df_a = log_rand<naked_double_float_type>();
naked_double_float_type df_b = log_rand<naked_double_float_type>();
const control_float_type ctrl_a = construct_from<control_float_type, naked_double_float_type>(df_a);
const control_float_type ctrl_b = construct_from<control_float_type, naked_double_float_type>(df_b);
naked_double_float_type df_c;
control_float_type ctrl_c;
switch (op)
{
case '+':
df_c = df_a + df_b;
ctrl_c = ctrl_a + ctrl_b;
break;
case '-':
df_c = df_a - df_b;
ctrl_c = ctrl_a - ctrl_b;
break;
case '*':
df_c = df_a * df_b;
ctrl_c = ctrl_a * ctrl_b;
break;
case '/':
if (df_b == naked_double_float_type(0))
continue;
df_c = df_a / df_b;
ctrl_c = ctrl_a / ctrl_b;
break;
default:
std::cerr << " internal error (unknown operator: " << op << ")" << std::endl;
return false;
}
// if exponent of result is out of range, continue
int exp2;
boost::multiprecision::frexp(ctrl_c, &exp2);
if (exp2 > std::numeric_limits<naked_double_float_type>::max_exponent || exp2 < std::numeric_limits<naked_double_float_type>::min_exponent)
continue;
control_float_type ctrl_df_c = construct_from<control_float_type, naked_double_float_type>(df_c);
const auto delta = fabs(1 - fabs(ctrl_c / ctrl_df_c));
if (delta > MaxError)
{
std::cerr << std::setprecision(std::numeric_limits<naked_double_float_type>::digits10 + 2);
std::cerr << " [FAILED] while performing '" << std::setprecision(100000) << ctrl_a << "' " << op << " '" << ctrl_b << "', got incorrect result: " << (df_c) << std::endl;
return false;
}
}
std::cout << " ok [" << count << " tests passed]" << std::endl;
return true;
}
template <typename T>
bool test_arithmetic()
{
std::cout << "Testing correctness of arithmetic operators for " << boost::core::demangle(typeid(T).name()) << std::endl;
bool result_is_ok = true;
result_is_ok &= test_op<T>('+');
result_is_ok &= test_op<T>('-');
result_is_ok &= test_op<T>('*');
result_is_ok &= test_op<T>('/');
std::cout << std::endl;
return result_is_ok;
}
} // namespace test_arithmetic_cpp_double_float
int main()
{
bool result_is_ok = true;
result_is_ok &= test_arithmetic_cpp_double_float::test_arithmetic<boost::multiprecision::number<boost::multiprecision::backends::cpp_double_float<float>, boost::multiprecision::et_off>>();
result_is_ok &= test_arithmetic_cpp_double_float::test_arithmetic<boost::multiprecision::number<boost::multiprecision::backends::cpp_double_float<double>, boost::multiprecision::et_off>>();
result_is_ok &= test_arithmetic_cpp_double_float::test_arithmetic<boost::multiprecision::number<boost::multiprecision::backends::cpp_double_float<long double>, boost::multiprecision::et_off>>();
#ifdef BOOST_MATH_USE_FLOAT128
//result_is_ok &= test_arithmetic_cpp_double_float::test_arithmetic<boost::multiprecision::backends::cpp_double_float<boost::multiprecision::float128>>();
#endif
return (result_is_ok ? 0 : -1);
}