Files
multiprecision/test/test_cpp_double_float_arithmetic.cpp
2021-07-28 20:04:10 +02:00

367 lines
14 KiB
C++

///////////////////////////////////////////////////////////////////////////////
// Copyright 2021 Fahad Syed.
// Copyright 2021 Christopher Kormanyos.
// Copyright 2021 Janek Kozicki.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// Test for correctness of arithmetic operators of cpp_double_float<>
// cd /mnt/c/Users/User/Documents/Ks/PC_Software/Test
// g++ -O3 -Wall -march=native -std=c++11 -I/mnt/c/MyGitRepos/BoostGSoC21_multiprecision/include -I/mnt/c/boost/boost_1_76_0 test.cpp -o test_double_float.exe
// Handle interaction with Boost's wrap of libquadmath __float128.
// g++ -O3 -Wall -march=native -std=gnu++11 -I/mnt/c/MyGitRepos/BoostGSoC21_multiprecision/include -I/mnt/c/boost/boost_1_76_0 -DBOOST_MATH_USE_FLOAT128 test.cpp -lquadmath -o test_double_float.exe
#include <ctime>
#include <iomanip>
#include <iostream>
#include <random>
#include <string>
#include <vector>
#include <boost/config.hpp>
#include <boost/multiprecision/number.hpp>
#ifdef BOOST_MATH_USE_FLOAT128
#include <boost/multiprecision/float128.hpp>
#endif
#include <boost/multiprecision/cpp_double_float.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
#include <boost/random/uniform_real_distribution.hpp>
#include <boost/core/demangle.hpp>
#if defined(__clang__)
#if defined __has_feature && (__has_feature(thread_sanitizer) || __has_feature(address_sanitizer))
#define CPP_DOUBLE_FLOAT_REDUCE_TEST_DEPTH
#endif
#elif defined(__GNUC__)
#if defined(__SANITIZE_THREAD__) || defined(__SANITIZE_ADDRESS__)
#define CPP_DOUBLE_FLOAT_REDUCE_TEST_DEPTH
#endif
#endif
namespace local {
template<typename ConstituentFloatType>
struct control
{
static constexpr int digits = (2 * std::numeric_limits<ConstituentFloatType>::digits) - 2;
static constexpr int digits10 = int(float(digits - 1) * 0.301F);
static constexpr int max_digits10 = int(float(digits) * 0.301F) + 2;
static constexpr int max_exponent10 = std::numeric_limits<ConstituentFloatType>::max_exponent10;
using double_float_type = boost::multiprecision::number<boost::multiprecision::backends::cpp_double_float<ConstituentFloatType>, boost::multiprecision::et_off>;
using control_float_type = boost::multiprecision::number<boost::multiprecision::cpp_dec_float<(2 * std::numeric_limits<double_float_type>::digits10) + 1>, boost::multiprecision::et_off>;
using random_engine_type = std::linear_congruential_engine<std::uint32_t, 48271, 0, 2147483647>;
static std::mt19937 engine_man;
static std::ranlux24_base engine_sgn;
static random_engine_type engine_dec_pt;
template<const std::size_t DigitsToGet = digits10>
static void get_random_fixed_string(std::string& str, const bool is_unsigned = false)
{
static std::uniform_int_distribution<unsigned>
dist_sgn
(
0,
1
);
static std::uniform_int_distribution<unsigned>
dist_first
(
1,
9
);
static std::uniform_int_distribution<unsigned>
dist_following
(
0,
9
);
const bool is_neg = ((is_unsigned == false) && (dist_sgn(engine_sgn) != 0));
// Use DigitsToGet + 2, where +2 represents the lenth of "0.".
std::string::size_type len = static_cast<std::string::size_type>(DigitsToGet + 2);
std::string::size_type pos = 0U;
if(is_neg)
{
++len;
str.resize(len);
str.at(pos) = char('-');
++pos;
}
else
{
str.resize(len);
}
str.at(pos) = static_cast<char>('0');
++pos;
str.at(pos) = static_cast<char>('.');
++pos;
str.at(pos) = static_cast<char>(dist_first(engine_man) + 0x30U);
++pos;
while(pos < str.length())
{
str.at(pos) = static_cast<char>(dist_following(engine_man) + 0x30U);
++pos;
}
const bool exp_is_neg = (dist_sgn(engine_sgn) != 0);
static std::uniform_int_distribution<unsigned>
dist_exp
(
0,
unsigned(float(max_exponent10) * 0.15F)
);
std::string str_exp = ((exp_is_neg == false) ? "E+" : "E-");
{
std::stringstream strm;
strm << dist_exp(engine_man);
str_exp += strm.str();
}
str += str_exp;
}
};
template<typename ConstituentFloatType> constexpr int control<ConstituentFloatType>::digits;
template<typename ConstituentFloatType> constexpr int control<ConstituentFloatType>::digits10;
template<typename ConstituentFloatType> constexpr int control<ConstituentFloatType>::max_digits10;
template<typename ConstituentFloatType> constexpr int control<ConstituentFloatType>::max_exponent10;
template<typename ConstituentFloatType> std::mt19937 control<ConstituentFloatType>::engine_man(static_cast<typename std::mt19937::result_type>(std::clock()));
template<typename ConstituentFloatType> std::ranlux24_base control<ConstituentFloatType>::engine_sgn(static_cast<typename std::ranlux24_base::result_type>(std::clock()));
template<typename ConstituentFloatType> typename control<ConstituentFloatType>::random_engine_type control<ConstituentFloatType>::engine_dec_pt(static_cast<typename random_engine_type::result_type>(std::clock()));
template <typename ConstituentFloatType>
bool test_op(char op, const unsigned count = 10000U)
{
using float_type = ConstituentFloatType;
using double_float_type = typename control<float_type>::double_float_type;
using control_float_type = typename control<float_type>::control_float_type;
const control_float_type MaxError = boost::multiprecision::ldexp(control_float_type(1), -std::numeric_limits<double_float_type>::digits + 2);
std::cout << "testing operator" << op << " (accuracy = " << std::numeric_limits<double_float_type>::digits << " bits)...";
for (unsigned i = 0U; i < count; ++i)
{
std::string str_a;
std::string str_b;
control<float_type>::get_random_fixed_string(str_a);
control<float_type>::get_random_fixed_string(str_b);
const double_float_type df_a(str_a);
const double_float_type df_b(str_b);
#if 0
const control_float_type ctrl_a = control_float_type(double_float_type::canonical_value(df_a).crep().first.crep().first)
+ control_float_type(double_float_type::canonical_value(df_a).crep().first.crep().second)
+ control_float_type(double_float_type::canonical_value(df_a).crep().second.crep().first)
+ control_float_type(double_float_type::canonical_value(df_a).crep().second.crep().second)
;
const control_float_type ctrl_b = control_float_type(double_float_type::canonical_value(df_b).crep().first.crep().first)
+ control_float_type(double_float_type::canonical_value(df_b).crep().first.crep().second)
+ control_float_type(double_float_type::canonical_value(df_b).crep().second.crep().first)
+ control_float_type(double_float_type::canonical_value(df_b).crep().second.crep().second)
;
#else
const control_float_type ctrl_a = control_float_type(double_float_type::canonical_value(df_a).crep().first)
+ control_float_type(double_float_type::canonical_value(df_a).crep().second)
;
const control_float_type ctrl_b = control_float_type(double_float_type::canonical_value(df_b).crep().first)
+ control_float_type(double_float_type::canonical_value(df_b).crep().second)
;
#endif
double_float_type df_c;
control_float_type ctrl_c;
switch (op)
{
default:
case '+':
df_c = df_a + df_b;
ctrl_c = ctrl_a + ctrl_b;
break;
case '-':
df_c = df_a - df_b;
ctrl_c = ctrl_a - ctrl_b;
break;
case '*':
df_c = df_a * df_b;
ctrl_c = ctrl_a * ctrl_b;
break;
case '/':
if (df_b != double_float_type(0))
{
df_c = df_a / df_b;
ctrl_c = ctrl_a / ctrl_b;
}
else
{
continue;
}
break;
}
#if 0
const control_float_type ctrl_df_c = control_float_type(double_float_type::canonical_value(df_c).crep().first.crep().first)
+ control_float_type(double_float_type::canonical_value(df_c).crep().first.crep().second)
+ control_float_type(double_float_type::canonical_value(df_c).crep().second.crep().first)
+ control_float_type(double_float_type::canonical_value(df_c).crep().second.crep().second)
;
#else
const control_float_type ctrl_df_c = control_float_type(double_float_type::canonical_value(df_c).crep().first)
+ control_float_type(double_float_type::canonical_value(df_c).crep().second)
;
#endif
const control_float_type delta = fabs(1 - fabs(ctrl_c / ctrl_df_c));
if (delta > MaxError)
{
std::cerr << std::setprecision(std::numeric_limits<double_float_type>::digits10 + 2);
std::cerr << " [FAILED] while performing '" << std::setprecision(100000) << ctrl_a << "' " << op << " '" << ctrl_b << "', got incorrect result: " << (df_c) << std::endl;
return false;
}
}
std::cout << " ok [" << count << " tests passed]" << std::endl;
return true;
}
template <typename ConstituentFloatType>
bool test_sqrt(const unsigned count = 10000U)
{
using float_type = ConstituentFloatType;
using double_float_type = typename control<float_type>::double_float_type;
using control_float_type = typename control<float_type>::control_float_type;
const control_float_type MaxError = boost::multiprecision::ldexp(control_float_type(1), -std::numeric_limits<double_float_type>::digits + 2);
std::cout << "testing func sqrt (accuracy = " << std::numeric_limits<double_float_type>::digits << " bits)...";
for (unsigned i = 0U; i < count; ++i)
{
std::string str_a;
control<float_type>::get_random_fixed_string(str_a, true);
const double_float_type df_a(str_a);
#if 0
const control_float_type ctrl_a = control_float_type(double_float_type::canonical_value(df_a).crep().first.crep().first)
+ control_float_type(double_float_type::canonical_value(df_a).crep().first.crep().second)
+ control_float_type(double_float_type::canonical_value(df_a).crep().second.crep().first)
+ control_float_type(double_float_type::canonical_value(df_a).crep().second.crep().second)
;
#else
const control_float_type ctrl_a = control_float_type(double_float_type::canonical_value(df_a).crep().first)
+ control_float_type(double_float_type::canonical_value(df_a).crep().second)
;
#endif
double_float_type df_c;
control_float_type ctrl_c;
df_c = sqrt(df_a);
ctrl_c = sqrt(ctrl_a);
#if 0
const control_float_type ctrl_df_c = control_float_type(double_float_type::canonical_value(df_c).crep().first.crep().first)
+ control_float_type(double_float_type::canonical_value(df_c).crep().first.crep().second)
+ control_float_type(double_float_type::canonical_value(df_c).crep().second.crep().first)
+ control_float_type(double_float_type::canonical_value(df_c).crep().second.crep().second)
;
#else
const control_float_type ctrl_df_c = control_float_type(double_float_type::canonical_value(df_c).crep().first)
+ control_float_type(double_float_type::canonical_value(df_c).crep().second)
;
#endif
const control_float_type delta = fabs(1 - fabs(ctrl_c / ctrl_df_c));
if (delta > MaxError)
{
std::cerr << std::setprecision(std::numeric_limits<double_float_type>::digits10 + 2);
std::cerr << " [FAILED] while performing '" << std::setprecision(100000) << ctrl_a << "' sqrt', got incorrect result: " << (df_c) << std::endl;
return false;
}
}
std::cout << " ok [" << count << " tests passed]" << std::endl;
return true;
}
template <typename T>
bool test_arithmetic(const unsigned count = 10000U)
{
std::cout << "Testing correctness of arithmetic operators for " << boost::core::demangle(typeid(T).name()) << std::endl;
bool result_is_ok = true;
result_is_ok &= test_op <T>('+', count);
result_is_ok &= test_op <T>('-', count);
result_is_ok &= test_op <T>('*', count);
result_is_ok &= test_op <T>('/', count);
result_is_ok &= test_sqrt<T>(count);
std::cout << std::endl;
return result_is_ok;
}
} // namespace local
int main()
{
bool result_is_ok = true;
#if defined(CPP_DOUBLE_FLOAT_REDUCE_TEST_DEPTH)
constexpr unsigned int test_cases_built_in = 10000U;
#else
constexpr unsigned int test_cases_built_in = 1000000U;
#endif
#if defined(CPP_DOUBLE_FLOAT_REDUCE_TEST_DEPTH)
constexpr unsigned int test_cases_float128 = 1000U;
#else
constexpr unsigned int test_cases_float128 = 20000U;
#endif
result_is_ok &= local::test_arithmetic<float>(test_cases_built_in);
result_is_ok &= local::test_arithmetic<double>(test_cases_built_in);
//result_is_ok &= local::test_arithmetic<long double>(test_cases_built_in);
#ifdef BOOST_MATH_USE_FLOAT128
result_is_ok &= local::test_arithmetic<boost::multiprecision::float128>(test_cases_float128);
#else
(void) test_cases_float128;
#endif
return (result_is_ok ? 0 : -1);
}