Files
multiprecision/example/hypergeometric_luke_algorithms.cpp

800 lines
25 KiB
C++

///////////////////////////////////////////////////////////////////////////////
// Copyright Christopher Kormanyos 2013.
// Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// This work is based on an earlier work:
// "Algorithm 910: A Portable C++ Multiple-Precision System for Special-Function Calculations",
// in ACM TOMS, {VOL 37, ISSUE 4, (February 2011)} (C) ACM, 2011. http://doi.acm.org/10.1145/1916461.1916469
//
#include <algorithm>
#include <array>
#include <cstdint>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <numeric>
#include <vector>
#include <boost/chrono.hpp>
//#define USE_CPP_BIN_FLOAT
//#define USE_CPP_DEC_FLOAT
//#define USE_MPFR
#ifndef DIGIT_COUNT
#error "No precision specificied - set the macro DIGIT_COUNT to the number of decimal digits to test"
#endif
#if defined(USE_CPP_BIN_FLOAT) && defined(USE_CPP_DEC_FLOAT)
#error the multiple precision type is ambiguous
#elif defined(USE_CPP_BIN_FLOAT)
#include <boost/multiprecision/cpp_bin_float.hpp>
typedef boost::multiprecision::number<boost::multiprecision::cpp_bin_float<DIGIT_COUNT> > mp_type;
#elif defined(USE_CPP_DEC_FLOAT)
#include <boost/multiprecision/cpp_dec_float.hpp>
typedef boost::multiprecision::number<boost::multiprecision::cpp_dec_float<DIGIT_COUNT> > mp_type;
#elif defined(USE_MPFR)
#include <boost/multiprecision/mpfr.hpp>
typedef boost::multiprecision::number<boost::multiprecision::mpfr_float_backend<DIGIT_COUNT> > mp_type;
#else
#error no multiple precision type is defined
#endif
#include <boost/math/constants/constants.hpp>
#include <boost/noncopyable.hpp>
template <class Clock>
struct stopwatch
{
typedef typename Clock::duration duration;
stopwatch()
{
m_start = Clock::now();
}
duration elapsed()
{
return Clock::now() - m_start;
}
void reset()
{
m_start = Clock::now();
}
private:
typename Clock::time_point m_start;
};
namespace my_math
{
mp_type chebyshev_t(const std::int32_t n, const mp_type& x);
mp_type chebyshev_u(const std::int32_t n, const mp_type& x);
mp_type hermite (const std::int32_t n, const mp_type& x);
mp_type laguerre (const std::int32_t n, const mp_type& x);
mp_type legendre_p (const std::int32_t n, const mp_type& x);
mp_type legendre_q (const std::int32_t n, const mp_type& x);
mp_type chebyshev_t(const std::uint32_t n, const mp_type& x, std::vector<mp_type>* vp);
mp_type chebyshev_u(const std::uint32_t n, const mp_type& x, std::vector<mp_type>* vp);
mp_type hermite (const std::uint32_t n, const mp_type& x, std::vector<mp_type>* vp);
mp_type laguerre (const std::uint32_t n, const mp_type& x, std::vector<mp_type>* vp);
bool isneg(const mp_type& x) { return (x < mp_type(0)); }
const mp_type& zero() { static const mp_type value_zero(0); return value_zero; }
const mp_type& one () { static const mp_type value_one (1); return value_one; }
const mp_type& two () { static const mp_type value_two (2); return value_two; }
}
namespace orthogonal_polynomial_series
{
typedef enum enum_polynomial_type
{
chebyshev_t_type = 1,
chebyshev_u_type = 2,
laguerre_l_type = 3,
hermite_h_type = 4
}
polynomial_type;
template<typename T> static inline T orthogonal_polynomial_template(const T& x, const std::uint32_t n, const polynomial_type type, std::vector<T>* const vp = static_cast<std::vector<T>*>(0u))
{
// Compute the value of an orthogonal polynomial of one of the following types:
// Chebyshev 1st, Chebyshev 2nd, Laguerre, or Hermite
if(vp != static_cast<std::vector<T>*>(0u))
{
vp->clear();
vp->reserve(static_cast<std::size_t>(n + 1u));
}
T y0 = my_math::one();
if(vp != static_cast<std::vector<T>*>(0u))
{
vp->push_back(y0);
}
if(n == static_cast<std::uint32_t>(0u))
{
return y0;
}
T y1;
if(type == chebyshev_t_type)
{
y1 = x;
}
else if(type == laguerre_l_type)
{
y1 = my_math::one() - x;
}
else
{
y1 = x * static_cast<std::uint32_t>(2u);
}
if(vp != static_cast<std::vector<T>*>(0u))
{
vp->push_back(y1);
}
if(n == static_cast<std::uint32_t>(1u))
{
return y1;
}
T a = my_math::two();
T b = my_math::zero();
T c = my_math::one();
T yk;
// Calculate higher orders using the recurrence relation.
// The direction of stability is upward recurrence.
for(std::int32_t k = static_cast<std::int32_t>(2); k <= static_cast<std::int32_t>(n); k++)
{
if(type == laguerre_l_type)
{
a = -my_math::one() / k;
b = my_math::two() + a;
c = my_math::one() + a;
}
else if(type == hermite_h_type)
{
c = my_math::two() * (k - my_math::one());
}
yk = (((a * x) + b) * y1) - (c * y0);
y0 = y1;
y1 = yk;
if(vp != static_cast<std::vector<T>*>(0u))
{
vp->push_back(yk);
}
}
return yk;
}
}
mp_type my_math::chebyshev_t(const std::int32_t n, const mp_type& x)
{
if(my_math::isneg(x))
{
const bool b_negate = ((n % static_cast<std::int32_t>(2)) != static_cast<std::int32_t>(0));
const mp_type y = chebyshev_t(n, -x);
return (!b_negate ? y : -y);
}
if(n < static_cast<std::int32_t>(0))
{
const std::int32_t nn = static_cast<std::int32_t>(-n);
return chebyshev_t(nn, x);
}
else
{
return orthogonal_polynomial_series::orthogonal_polynomial_template(x, static_cast<std::uint32_t>(n), orthogonal_polynomial_series::chebyshev_t_type);
}
}
mp_type my_math::chebyshev_u(const std::int32_t n, const mp_type& x)
{
if(my_math::isneg(x))
{
const bool b_negate = ((n % static_cast<std::int32_t>(2)) != static_cast<std::int32_t>(0));
const mp_type y = chebyshev_u(n, -x);
return (!b_negate ? y : -y);
}
if(n < static_cast<std::int32_t>(0))
{
if(n == static_cast<std::int32_t>(-2))
{
return my_math::one();
}
else if(n == static_cast<std::int32_t>(-1))
{
return my_math::zero();
}
else
{
const std::int32_t n_minus_two = static_cast<std::int32_t>(static_cast<std::int32_t>(-n) - static_cast<std::int32_t>(2));
return -chebyshev_u(n_minus_two, x);
}
}
else
{
return orthogonal_polynomial_series::orthogonal_polynomial_template(x, static_cast<std::uint32_t>(n), orthogonal_polynomial_series::chebyshev_u_type);
}
}
mp_type my_math::hermite(const std::int32_t n, const mp_type& x)
{
if(n < static_cast<std::int32_t>(0))
{
// Negative order is not supported.
return my_math::zero();
}
else
{
return orthogonal_polynomial_series::orthogonal_polynomial_template(x, static_cast<std::uint32_t>(n), orthogonal_polynomial_series::hermite_h_type);
}
}
mp_type my_math::laguerre(const std::int32_t n, const mp_type& x)
{
if(n < static_cast<std::int32_t>(0))
{
// Negative order is not supported.
return my_math::zero();
}
else if(n == static_cast<std::int32_t>(0))
{
return my_math::one();
}
else if(n == static_cast<std::int32_t>(1))
{
return my_math::one() - x;
}
if(my_math::isneg(x))
{
// Negative argument is not supported.
return my_math::zero();
}
else
{
return orthogonal_polynomial_series::orthogonal_polynomial_template(x, static_cast<std::uint32_t>(n), orthogonal_polynomial_series::laguerre_l_type);
}
}
mp_type my_math::chebyshev_t(const std::uint32_t n, const mp_type& x, std::vector<mp_type>* const vp) { return orthogonal_polynomial_series::orthogonal_polynomial_template(x, static_cast<std::int32_t>(n), orthogonal_polynomial_series::chebyshev_t_type, vp); }
mp_type my_math::chebyshev_u(const std::uint32_t n, const mp_type& x, std::vector<mp_type>* const vp) { return orthogonal_polynomial_series::orthogonal_polynomial_template(x, static_cast<std::int32_t>(n), orthogonal_polynomial_series::chebyshev_u_type, vp); }
mp_type my_math::hermite (const std::uint32_t n, const mp_type& x, std::vector<mp_type>* const vp) { return orthogonal_polynomial_series::orthogonal_polynomial_template(x, static_cast<std::int32_t>(n), orthogonal_polynomial_series::hermite_h_type, vp); }
mp_type my_math::laguerre (const std::uint32_t n, const mp_type& x, std::vector<mp_type>* const vp) { return orthogonal_polynomial_series::orthogonal_polynomial_template(x, static_cast<std::int32_t>(n), orthogonal_polynomial_series::laguerre_l_type, vp); }
namespace util
{
template<typename T1,
typename T2 = T1>
struct alternating_sum
{
public:
alternating_sum(const bool b_neg = false, const T2& init = T2(0)) : b_neg_term(b_neg),
initial (init) { }
T1 operator()(const T1& sum, const T2& ck)
{
const T1 the_sum = (!b_neg_term ? T1(sum + ck) : T1(sum - ck));
b_neg_term = !b_neg_term;
return the_sum + initial;
}
private:
bool b_neg_term;
const T2 initial;
const alternating_sum& operator=(const alternating_sum&);
};
template<typename T1,
typename T2 = T1>
struct point
{
T1 x;
T2 y;
point(const T1& X = T1(),
const T2& Y = T2()) : x(X), y(Y) { }
};
template<typename T1,
typename T2>
inline bool operator<(const point<T1, T2>& left,
const point<T1, T2>& right)
{
return (left.x < right.x);
}
template<typename T1,
typename T2 = T1>
struct linear_interpolate
{
static T2 interpolate(const T1& x, const std::vector<util::point<T1, T2> >& points)
{
if(points.empty())
{
return T2(0);
}
else if(x <= points.front().x || points.size() == static_cast<std::size_t>(1u))
{
return points.front().y;
}
else if(x >= points.back().x)
{
return points.back().y;
}
else
{
const util::point<T1, T2> x_find(x);
const typename std::vector<util::point<T1, T2> >::const_iterator it =
std::lower_bound(points.begin(), points.end(), x_find);
const T1 xn = (it - 1u)->x;
const T1 xnp1_minus_xn = it->x - xn;
const T1 delta_x = x - xn;
const T2 yn = (it - 1u)->y;
const T2 ynp1_minus_yn = it->y - yn;
return T2(yn + T2((delta_x * ynp1_minus_yn) / xnp1_minus_xn));
}
}
};
double digit_scale()
{
const std::array<util::point<double>, static_cast<std::size_t>(5U)> scale_data =
{{
util::point<double>( 50.0, 1.0 / 6.0),
util::point<double>( 100.0, 1.0 / 3.0),
util::point<double>( 200.0, 1.0 / 2.0),
util::point<double>( 300.0, 1.0),
util::point<double>(1000.0, 3.0 + (1.0 / 3.0)),
}};
const std::vector<util::point<double> > scale(scale_data.begin(), scale_data.end());
const double the_scale = util::linear_interpolate<double>::interpolate(static_cast<double>(std::numeric_limits<mp_type>::digits10), scale);
return the_scale;
}
}
namespace examples
{
namespace nr_006
{
template<typename T> class HypergPFQ_Base : private boost::noncopyable
{
protected:
const T Z;
const mp_type W;
std::int32_t N;
mutable std::deque<T> C;
protected:
HypergPFQ_Base(const T& z,
const mp_type& w) : Z(z),
W(w),
N(static_cast<std::int32_t>(util::digit_scale() * 500.0)),
C(0u) { }
public:
virtual ~HypergPFQ_Base() { }
virtual void ccoef(void) const = 0;
virtual T series(void) const
{
using my_math::chebyshev_t;
// Compute the Chebyshev coefficients.
// Get the values of the shifted Chebyshev polynomials.
std::vector<T> Tn_shifted;
const T z_shifted = ((Z / W) * static_cast<std::int32_t>(2)) - static_cast<std::int32_t>(1);
chebyshev_t(static_cast<std::uint32_t>(C.size()), z_shifted, &Tn_shifted);
// Luke: C ---------- COMPUTE SCALE FACTOR ----------
// Luke: C
// Luke: C ---------- SCALE THE COEFFICIENTS ----------
// Luke: C
// The coefficient scaling is preformed after the Chebyshev summation,
// and it is carried out with a single division operation.
const T scale = std::accumulate(C.begin(), C.end(), T(0), util::alternating_sum<T>());
// Compute the result of the series expansion using unscaled coefficients.
const T sum = std::inner_product(C.begin(), C.end(), Tn_shifted.begin(), T(0));
// Return the properly scaled result.
return sum / scale;
}
};
template<typename T> class Ccoef3Hyperg1F1 : public HypergPFQ_Base<T>
{
private:
const T AP;
const T CP;
public:
Ccoef3Hyperg1F1(const T& a, const T& c, const T& z, const mp_type& w) : HypergPFQ_Base<T>(z, w),
AP(a),
CP(c) { }
virtual ~Ccoef3Hyperg1F1() { }
public:
virtual void ccoef(void) const
{
// See Luke 1977 page 74.
const std::int32_t N1 = static_cast<std::int32_t>(HypergPFQ_Base<T>::N + static_cast<std::int32_t>(1));
const std::int32_t N2 = static_cast<std::int32_t>(HypergPFQ_Base<T>::N + static_cast<std::int32_t>(2));
// Luke: C ---------- START COMPUTING COEFFICIENTS USING ----------
// Luke: C ---------- BACKWARD RECURRENCE SCHEME ----------
// Luke: C
T A3(0);
T A2(0);
T A1(1);
HypergPFQ_Base<T>::C.resize(1u, A1);
std::int32_t X = N1;
std::int32_t X1 = N2;
T XA = X + AP;
T X3A = (X + 3) - AP;
const T Z1 = T(4) / HypergPFQ_Base<T>::W;
for(std::int32_t k = static_cast<std::int32_t>(0); k < N1; k++)
{
--X;
--X1;
--XA;
--X3A;
const T X3A_over_X2 = X3A / static_cast<std::int32_t>(X + 2);
// The terms have been slightly re-arranged resulting in fewer multiplications.
// Parentheses have been added to avoid reliance on operator precedence.
const T PART1 = A1 * (((X + CP) * Z1) - X3A_over_X2);
const T PART2 = A2 * (Z1 * ((X + 3) - CP) + (XA / X1));
const T PART3 = A3 * X3A_over_X2;
const T term = (((PART1 + PART2) + PART3) * X1) / XA;
HypergPFQ_Base<T>::C.push_front(term);
A3 = A2;
A2 = A1;
A1 = HypergPFQ_Base<T>::C.front();
}
HypergPFQ_Base<T>::C.front() /= static_cast<std::int32_t>(2);
}
};
template<typename T> class Ccoef6Hyperg1F2 : public HypergPFQ_Base<T>
{
private:
const T AP;
const T BP;
const T CP;
public:
Ccoef6Hyperg1F2(const T& a,
const T& b,
const T& c,
const T& z,
const mp_type& w) : HypergPFQ_Base<T>(z, w),
AP(a),
BP(b),
CP(c) { }
virtual ~Ccoef6Hyperg1F2() { }
public:
virtual void ccoef(void) const
{
// See Luke 1977 page 85.
const std::int32_t N1 = static_cast<std::int32_t>(HypergPFQ_Base<T>::N + static_cast<std::int32_t>(1));
// Luke: C ---------- START COMPUTING COEFFICIENTS USING ----------
// Luke: C ---------- BACKWARD RECURRENCE SCHEME ----------
// Luke: C
T A4(0);
T A3(0);
T A2(0);
T A1(1);
HypergPFQ_Base<T>::C.resize(1u, A1);
std::int32_t X = N1;
T PP = X + AP;
const T Z1 = T(4) / HypergPFQ_Base<T>::W;
for(std::int32_t k = static_cast<std::int32_t>(0); k < N1; k++)
{
--X;
--PP;
const std::int32_t TWO_X = static_cast<std::int32_t>(X * 2);
const std::int32_t X_PLUS_1 = static_cast<std::int32_t>(X + 1);
const std::int32_t X_PLUS_3 = static_cast<std::int32_t>(X + 3);
const std::int32_t X_PLUS_4 = static_cast<std::int32_t>(X + 4);
const T QQ = T(TWO_X + 3) / static_cast<std::int32_t>(TWO_X + static_cast<std::int32_t>(5));
const T SS = (X + BP) * (X + CP);
// The terms have been slightly re-arranged resulting in fewer multiplications.
// Parentheses have been added to avoid reliance on operator precedence.
const T PART1 = A1 * (((PP - (QQ * (PP + 1))) * 2) + (SS * Z1));
const T PART2 = (A2 * (X + 2)) * ((((TWO_X + 1) * PP) / X_PLUS_1) - ((QQ * 4) * (PP + 1)) + (((TWO_X + 3) * (PP + 2)) / X_PLUS_3) + ((Z1 * 2) * (SS - (QQ * (X_PLUS_1 + BP)) * (X_PLUS_1 + CP))));
const T PART3 = A3 * ((((X_PLUS_3 - AP) - (QQ * (X_PLUS_4 - AP))) * 2) + (((QQ * Z1) * (X_PLUS_4 - BP)) * (X_PLUS_4 - CP)));
const T PART4 = ((A4 * QQ) * (X_PLUS_4 - AP)) / X_PLUS_3;
const T term = (((PART1 - PART2) + (PART3 - PART4)) * X_PLUS_1) / PP;
HypergPFQ_Base<T>::C.push_front(term);
A4 = A3;
A3 = A2;
A2 = A1;
A1 = HypergPFQ_Base<T>::C.front();
}
HypergPFQ_Base<T>::C.front() /= static_cast<std::int32_t>(2);
}
};
template<typename T> class Ccoef2Hyperg2F1 : public HypergPFQ_Base<T>
{
private:
const T AP;
const T BP;
const T CP;
public:
Ccoef2Hyperg2F1(const T& a,
const T& b,
const T& c,
const T& z,
const mp_type& w) : HypergPFQ_Base<T>(z, w),
AP(a),
BP(b),
CP(c)
{
// Set anew the number of terms in the Chebyshev expansion.
HypergPFQ_Base<T>::N = static_cast<std::int32_t>(util::digit_scale() * 1600.0);
}
virtual ~Ccoef2Hyperg2F1() { }
public:
virtual void ccoef(void) const
{
// See Luke 1977 page 59.
const std::int32_t N1 = static_cast<std::int32_t>(HypergPFQ_Base<T>::N + static_cast<std::int32_t>(1));
const std::int32_t N2 = static_cast<std::int32_t>(HypergPFQ_Base<T>::N + static_cast<std::int32_t>(2));
// Luke: C ---------- START COMPUTING COEFFICIENTS USING ----------
// Luke: C ---------- BACKWARD RECURRENCE SCHEME ----------
// Luke: C
T A3(0);
T A2(0);
T A1(1);
HypergPFQ_Base<T>::C.resize(1u, A1);
std::int32_t X = N1;
std::int32_t X1 = N2;
std::int32_t X3 = static_cast<std::int32_t>((X * 2) + 3);
T X3A = (X + 3) - AP;
T X3B = (X + 3) - BP;
const T Z1 = T(4) / HypergPFQ_Base<T>::W;
for(std::int32_t k = static_cast<std::int32_t>(0); k < N1; k++)
{
--X;
--X1;
--X3A;
--X3B;
X3 -= 2;
const std::int32_t X_PLUS_2 = static_cast<std::int32_t>(X + 2);
const T XAB = T(1) / ((X + AP) * (X + BP));
// The terms have been slightly re-arranged resulting in fewer multiplications.
// Parentheses have been added to avoid reliance on operator precedence.
const T PART1 = (A1 * X1) * (2 - (((AP + X1) * (BP + X1)) * ((T(X3) / X_PLUS_2) * XAB)) + ((CP + X) * (XAB * Z1)));
const T PART2 = (A2 * XAB) * ((X3A * X3B) - (X3 * ((X3A + X3B) - 1)) + (((3 - CP) + X) * (X1 * Z1)));
const T PART3 = (A3 * X1) * (X3A / X_PLUS_2) * (X3B * XAB);
const T term = (PART1 + PART2) - PART3;
HypergPFQ_Base<T>::C.push_front(term);
A3 = A2;
A2 = A1;
A1 = HypergPFQ_Base<T>::C.front();
}
HypergPFQ_Base<T>::C.front() /= static_cast<std::int32_t>(2);
}
};
mp_type luke_ccoef3_hyperg_1f1(const mp_type& a, const mp_type& b, const mp_type& x);
mp_type luke_ccoef6_hyperg_1f2(const mp_type& a, const mp_type& b, const mp_type& c, const mp_type& x);
mp_type luke_ccoef2_hyperg_2f1(const mp_type& a, const mp_type& b, const mp_type& c, const mp_type& x);
}
}
mp_type examples::nr_006::luke_ccoef3_hyperg_1f1(const mp_type& a, const mp_type& b, const mp_type& x)
{
const Ccoef3Hyperg1F1<mp_type> c3_h1f1(a, b, x, mp_type(-10));
c3_h1f1.ccoef();
return c3_h1f1.series();
}
mp_type examples::nr_006::luke_ccoef6_hyperg_1f2(const mp_type& a, const mp_type& b, const mp_type& c, const mp_type& x)
{
const Ccoef6Hyperg1F2<mp_type> c6_h1f2(a, b, c, x, mp_type(-10));
c6_h1f2.ccoef();
return c6_h1f2.series();
}
mp_type examples::nr_006::luke_ccoef2_hyperg_2f1(const mp_type& a, const mp_type& b, const mp_type& c, const mp_type& x)
{
const Ccoef2Hyperg2F1<mp_type> c2_h2f1(a, b, c, x, mp_type(-20));
c2_h2f1.ccoef();
return c2_h2f1.series();
}
int main()
{
stopwatch<boost::chrono::high_resolution_clock> w;
std::vector<mp_type> hypergeometric_2f1_results(20U);
std::vector<mp_type> hypergeometric_1f2_results(20U);
std::vector<mp_type> hypergeometric_1f1_results(20U);
const mp_type a(mp_type(3) / 7);
const mp_type b(mp_type(2) / 3);
const mp_type c(mp_type(1) / 4);
std::int_least16_t i;
std::cout << "test hypergeometric_1f1." << std::endl;
i = 1U;
// Generate a table of values of Hypergeometric1F1.
// Compare with the Mathematica command:
// Table[N[HypergeometricPFQ[{3/7}, {2/3}, -(i*EulerGamma)], 100], {i, 1, 20, 1}]
std::for_each(hypergeometric_1f1_results.begin(),
hypergeometric_1f1_results.end(),
[&i, &a, &b, &c](mp_type& new_value)
{
const mp_type x(-(boost::math::constants::euler<mp_type>() * i));
new_value = examples::nr_006::luke_ccoef3_hyperg_1f1(a, b, x);
++i;
});
// Print the values of Hypergeometric1F1.
std::for_each(hypergeometric_1f1_results.begin(),
hypergeometric_1f1_results.end(),
[](const mp_type& h)
{
std::cout << std::setprecision(std::numeric_limits<mp_type>::digits10 - 10)
<< h
<< std::endl;
});
std::cout << "test hypergeometric_1f2." << std::endl;
i = 1U;
// Generate a table of values of Hypergeometric1F2.
// Compare with the Mathematica command:
// Table[N[HypergeometricPFQ[{3/7}, {2/3, 1/4}, -(i*EulerGamma)], 100], {i, 1, 20, 1}]
std::for_each(hypergeometric_1f2_results.begin(),
hypergeometric_1f2_results.end(),
[&i, &a, &b, &c](mp_type& new_value)
{
const mp_type x(-(boost::math::constants::euler<mp_type>() * i));
new_value = examples::nr_006::luke_ccoef6_hyperg_1f2(a, b, c, x);
++i;
});
// Print the values of Hypergeometric1F2.
std::for_each(hypergeometric_1f2_results.begin(),
hypergeometric_1f2_results.end(),
[](const mp_type& h)
{
std::cout << std::setprecision(std::numeric_limits<mp_type>::digits10 - 10)
<< h
<< std::endl;
});
std::cout << "test hypergeometric_2f1." << std::endl;
i = 1U;
// Generate a table of values of Hypergeometric2F1.
// Compare with the Mathematica command:
// Table[N[HypergeometricPFQ[{3/7, 2/3}, {1/4}, -(i * EulerGamma)], 100], {i, 1, 20, 1}]
std::for_each(hypergeometric_2f1_results.begin(),
hypergeometric_2f1_results.end(),
[&i, &a, &b, &c](mp_type& new_value)
{
const mp_type x(-(boost::math::constants::euler<mp_type>() * i));
new_value = examples::nr_006::luke_ccoef2_hyperg_2f1(a, b, c, x);
++i;
});
// Print the values of Hypergeometric2F1.
std::for_each(hypergeometric_2f1_results.begin(),
hypergeometric_2f1_results.end(),
[](const mp_type& h)
{
std::cout << std::setprecision(std::numeric_limits<mp_type>::digits10 - 10)
<< h
<< std::endl;
});
double t = boost::chrono::duration_cast<boost::chrono::duration<double> >(w.elapsed()).count();
std::cout << "Total execution time = " << std::setprecision(3) << t << "s" << std::endl;
return 0;
}