mirror of
https://github.com/boostorg/multiprecision.git
synced 2026-01-27 07:02:10 +00:00
192 lines
7.3 KiB
C++
192 lines
7.3 KiB
C++
///////////////////////////////////////////////////////////////////////////////
|
|
// Copyright 2021 Fahad Syed.
|
|
// Copyright 2021 Christopher Kormanyos.
|
|
// Copyright 2021 Janek Kozicki.
|
|
// Distributed under the Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt
|
|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
//
|
|
// Test for correctness of arithmetic operators of cpp_double_float<>
|
|
|
|
#include <boost/multiprecision/cpp_double_float.hpp>
|
|
#include <boost/multiprecision/cpp_dec_float.hpp>
|
|
#if 0
|
|
// TBD: Quadmath support when available
|
|
#include <boost/multiprecision/float128.hpp>
|
|
#endif
|
|
|
|
#include <iomanip>
|
|
#include <iostream>
|
|
#include <random>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace test_arithmetic_cpp_double_float {
|
|
template <typename FloatingPointType,
|
|
typename std::enable_if<std::is_floating_point<FloatingPointType>::value, bool>::type = true>
|
|
FloatingPointType uniform_real()
|
|
{
|
|
static std::random_device rd;
|
|
static std::mt19937 gen (rd());
|
|
static std::uniform_real_distribution<FloatingPointType> dis(0.0, 1.0);
|
|
|
|
return dis(gen);
|
|
}
|
|
|
|
int rand_in_range(int a, int b)
|
|
{
|
|
return a + int(float(b - a) * uniform_real<float>());
|
|
}
|
|
|
|
template <typename FloatingPointType,
|
|
typename std::enable_if<std::is_floating_point<FloatingPointType>::value, bool>::type = true>
|
|
FloatingPointType uniform_rand()
|
|
{
|
|
return uniform_real<FloatingPointType>();
|
|
}
|
|
|
|
template <typename FloatingPointType>
|
|
boost::multiprecision::backends::cpp_double_float<typename FloatingPointType::float_type> uniform_rand()
|
|
{
|
|
using float_type = typename FloatingPointType::float_type;
|
|
return boost::multiprecision::backends::cpp_double_float<float_type>(uniform_real<float_type>()) * boost::multiprecision::backends::cpp_double_float<float_type>(uniform_real<float_type>());
|
|
}
|
|
|
|
template <typename FloatingPointType, typename std::enable_if<std::is_floating_point<FloatingPointType>::value>::type const* = nullptr>
|
|
FloatingPointType log_rand()
|
|
{
|
|
if (uniform_real<float>() < (1. / 100.))
|
|
return 0; // throw in a few zeroes
|
|
FloatingPointType ret = std::ldexp(uniform_real<FloatingPointType>(), rand_in_range(std::numeric_limits<FloatingPointType>::min_exponent, std::numeric_limits<FloatingPointType>::max_exponent));
|
|
return std::fmax(ret, std::numeric_limits<FloatingPointType>::epsilon());
|
|
}
|
|
|
|
template <typename FloatingPointType>
|
|
boost::multiprecision::backends::cpp_double_float<typename FloatingPointType::float_type> log_rand()
|
|
{
|
|
boost::multiprecision::backends::cpp_double_float<typename FloatingPointType::float_type> a(uniform_rand<boost::multiprecision::backends::cpp_double_float<typename FloatingPointType::float_type> >() + typename FloatingPointType::float_type(1));
|
|
a *= log_rand<typename FloatingPointType::float_type>();
|
|
return a;
|
|
}
|
|
|
|
template <typename ConstructionType, typename FloatingPointType, typename std::enable_if<std::numeric_limits<FloatingPointType>::is_iec559>::type const* = nullptr>
|
|
ConstructionType construct_from(FloatingPointType f) {
|
|
return ConstructionType(f);
|
|
}
|
|
|
|
template <typename ConstructionType, typename FloatingPointType, typename std::enable_if<!std::numeric_limits<FloatingPointType>::is_iec559>::type const* = nullptr>
|
|
ConstructionType construct_from(FloatingPointType f)
|
|
{
|
|
return ConstructionType(f.first()) + ConstructionType(f.second());
|
|
}
|
|
|
|
template <typename FloatingPointType>
|
|
int test_op(char op, const unsigned count = 10000U)
|
|
{
|
|
using naked_double_float_type = FloatingPointType;
|
|
using control_float_type = boost::multiprecision::number<boost::multiprecision::cpp_dec_float<std::numeric_limits<naked_double_float_type>::digits10 * 2 + 1>, boost::multiprecision::et_off>;
|
|
|
|
const control_float_type MaxError = boost::multiprecision::ldexp(control_float_type(1), -std::numeric_limits<naked_double_float_type>::digits);
|
|
std::cout << "testing operator" << op << " (accuracy = " << std::numeric_limits<naked_double_float_type>::digits << " bits)...";
|
|
|
|
for (unsigned i = 0U; i < count; ++i)
|
|
{
|
|
naked_double_float_type df_a = log_rand<naked_double_float_type>();
|
|
naked_double_float_type df_b = log_rand<naked_double_float_type>();
|
|
const control_float_type ctrl_a = construct_from<control_float_type, naked_double_float_type>(df_a);
|
|
const control_float_type ctrl_b = construct_from<control_float_type, naked_double_float_type>(df_b);
|
|
|
|
naked_double_float_type df_c;
|
|
control_float_type ctrl_c;
|
|
|
|
switch (op)
|
|
{
|
|
case '+':
|
|
df_c = df_a + df_b;
|
|
ctrl_c = ctrl_a + ctrl_b;
|
|
break;
|
|
case '-':
|
|
df_c = df_a - df_b;
|
|
ctrl_c = ctrl_a - ctrl_b;
|
|
break;
|
|
case '*':
|
|
df_c = df_a * df_b;
|
|
ctrl_c = ctrl_a * ctrl_b;
|
|
break;
|
|
case '/':
|
|
if (df_b == naked_double_float_type(0))
|
|
continue;
|
|
df_c = df_a / df_b;
|
|
ctrl_c = ctrl_a / ctrl_b;
|
|
break;
|
|
default:
|
|
std::cerr << " internal error (unknown operator: " << op << ")" << std::endl;
|
|
return -1;
|
|
}
|
|
|
|
// if exponent of result is out of range, continue
|
|
int exp2;
|
|
boost::multiprecision::frexp(ctrl_c, &exp2);
|
|
if (exp2 > std::numeric_limits<naked_double_float_type>::max_exponent || exp2 < std::numeric_limits<naked_double_float_type>::min_exponent)
|
|
continue;
|
|
|
|
control_float_type ctrl_df_c = construct_from<control_float_type, naked_double_float_type>(df_c);
|
|
|
|
const auto delta = fabs(1 - fabs(ctrl_c / ctrl_df_c));
|
|
|
|
if (delta > MaxError)
|
|
{
|
|
std::cerr << std::setprecision(std::numeric_limits<naked_double_float_type>::digits10 + 2);
|
|
std::cerr << " [FAILED] while performing '" << ctrl_a << "' " << op << " '" << ctrl_b << "'" << std::endl;
|
|
|
|
// uncomment for more debugging information (only for cpp_double_float<> type)
|
|
//std::cerr << "(df_a = " << df_a.get_raw_str() << ", df_b = " << df_b.get_raw_str() << ")" << std::endl;
|
|
//std::cerr << "expected: " << ctrl_c << std::endl;
|
|
//std::cerr << "actual : " << ctrl_df_c << " (" << df_c.get_raw_str() << ")" << std::endl;
|
|
//std::cerr << "error : " << delta << std::endl;
|
|
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
std::cout << " ok [" << count << " tests passed]" << std::endl;
|
|
return 0;
|
|
}
|
|
|
|
template <typename T>
|
|
bool test_arithmetic()
|
|
{
|
|
std::string type_name = typeid(T).name();
|
|
size_t idx;
|
|
if ((idx = type_name.rfind(":")) != std::string::npos)
|
|
type_name = type_name.substr(idx + 1, type_name.size());
|
|
|
|
std::cout << "Testing correctness of arithmetic operators for " << type_name << std::endl;
|
|
|
|
int e = 0;
|
|
e += test_op<T>('+');
|
|
e += test_op<T>('-');
|
|
e += test_op<T>('*');
|
|
e += test_op<T>('/');
|
|
|
|
std::cout << std::endl;
|
|
|
|
return e;
|
|
}
|
|
|
|
} // namespace test_arithmetic_cpp_double_float
|
|
|
|
|
|
int main()
|
|
{
|
|
int e = 0;
|
|
// uncomment to check if tests themselves are correct
|
|
//e += test_arithmetic_cpp_double_float::test_arithmetic<float>();
|
|
//e += test_arithmetic_cpp_double_float::test_arithmetic<double>();
|
|
|
|
e += test_arithmetic_cpp_double_float::test_arithmetic<boost::multiprecision::backends::cpp_double_float<float> >();
|
|
e += test_arithmetic_cpp_double_float::test_arithmetic<boost::multiprecision::backends::cpp_double_float<double> >();
|
|
|
|
return e;
|
|
}
|