2
0
mirror of https://github.com/boostorg/math.git synced 2026-01-26 18:52:10 +00:00
Files
math/doc/html/math_toolkit/sf_poly/gegenbauer.html
jzmaddock 64154c2d4b Update history, regenerate docs.
Add some missing files.
[CI SKIP]
2020-10-19 18:19:34 +01:00

169 lines
19 KiB
HTML

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Gegenbauer Polynomials</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../../index.html" title="Math Toolkit 2.13.0">
<link rel="up" href="../sf_poly.html" title="Polynomials">
<link rel="prev" href="cardinal_b_splines.html" title="Cardinal B-splines">
<link rel="next" href="jacobi.html" title="Jacobi Polynomials">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
<td align="center"><a href="../../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="cardinal_b_splines.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../sf_poly.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="jacobi.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h3 class="title">
<a name="math_toolkit.sf_poly.gegenbauer"></a><a class="link" href="gegenbauer.html" title="Gegenbauer Polynomials">Gegenbauer Polynomials</a>
</h3></div></div></div>
<h5>
<a name="math_toolkit.sf_poly.gegenbauer.h0"></a>
<span class="phrase"><a name="math_toolkit.sf_poly.gegenbauer.synopsis"></a></span><a class="link" href="gegenbauer.html#math_toolkit.sf_poly.gegenbauer.synopsis">Synopsis</a>
</h5>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">gegenbauer</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
</pre>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Real</span><span class="special">&gt;</span>
<span class="identifier">Real</span> <span class="identifier">gegenbauer</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">lambda</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Real</span><span class="special">&gt;</span>
<span class="identifier">Real</span> <span class="identifier">gegenbauer_prime</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">lambda</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Real</span><span class="special">&gt;</span>
<span class="identifier">Real</span> <span class="identifier">gegenbauer_derivative</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">lambda</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">k</span><span class="special">);</span>
<span class="special">}}</span> <span class="comment">// namespaces</span>
</pre>
<p>
Gegenbauer polynomials are a family of orthogonal polynomials.
</p>
<p>
A basic usage is as follows:
</p>
<pre class="programlisting"><span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">gegenbauer</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">x</span> <span class="special">=</span> <span class="number">0.5</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">lambda</span> <span class="special">=</span> <span class="number">0.5</span><span class="special">;</span>
<span class="keyword">unsigned</span> <span class="identifier">n</span> <span class="special">=</span> <span class="number">3</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">y</span> <span class="special">=</span> <span class="identifier">gegenbauer</span><span class="special">(</span><span class="identifier">n</span><span class="special">,</span> <span class="identifier">lambda</span><span class="special">,</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
All derivatives of the Gegenbauer polynomials are available. The <span class="emphasis"><em>k</em></span>-th
derivative of the <span class="emphasis"><em>n</em></span>-th Gegenbauer polynomial is given
by
</p>
<pre class="programlisting"><span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">gegenbauer_derivative</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">x</span> <span class="special">=</span> <span class="number">0.5</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">lambda</span> <span class="special">=</span> <span class="number">0.5</span><span class="special">;</span>
<span class="keyword">unsigned</span> <span class="identifier">n</span> <span class="special">=</span> <span class="number">3</span><span class="special">;</span>
<span class="keyword">unsigned</span> <span class="identifier">k</span> <span class="special">=</span> <span class="number">2</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">y</span> <span class="special">=</span> <span class="identifier">gegenbauer_derivative</span><span class="special">(</span><span class="identifier">n</span><span class="special">,</span> <span class="identifier">lambda</span><span class="special">,</span> <span class="identifier">x</span><span class="special">,</span> <span class="identifier">k</span><span class="special">);</span>
</pre>
<p>
For consistency with the rest of the library, <code class="computeroutput"><span class="identifier">gegenbauer_prime</span></code>
is provided which simply returns <code class="computeroutput"><span class="identifier">gegenbauer_derivative</span><span class="special">(</span><span class="identifier">n</span><span class="special">,</span>
<span class="identifier">lambda</span><span class="special">,</span>
<span class="identifier">x</span><span class="special">,</span><span class="number">1</span> <span class="special">)</span></code>.
</p>
<p>
<span class="inlinemediaobject"><object type="image/svg+xml" data="../../../graphs/gegenbauer.svg"></object></span>
</p>
<h4>
<a name="math_toolkit.sf_poly.gegenbauer.h1"></a>
<span class="phrase"><a name="math_toolkit.sf_poly.gegenbauer.implementation"></a></span><a class="link" href="gegenbauer.html#math_toolkit.sf_poly.gegenbauer.implementation">Implementation</a>
</h4>
<p>
The implementation uses the 3-term recurrence for the Gegenbauer polynomials,
rising.
</p>
<h4>
<a name="math_toolkit.sf_poly.gegenbauer.h2"></a>
<span class="phrase"><a name="math_toolkit.sf_poly.gegenbauer.performance"></a></span><a class="link" href="gegenbauer.html#math_toolkit.sf_poly.gegenbauer.performance">Performance</a>
</h4>
<p>
Double precision timing on a consumer x86 laptop is shown below. Included
is the time to generate a random number argument in the interval [-1, 1]
(which takes 11.5ns).
</p>
<pre class="programlisting"><span class="identifier">Run</span> <span class="identifier">on</span> <span class="special">(</span><span class="number">16</span> <span class="identifier">X</span> <span class="number">4300</span> <span class="identifier">MHz</span> <span class="identifier">CPU</span> <span class="identifier">s</span><span class="special">)</span>
<span class="identifier">CPU</span> <span class="identifier">Caches</span><span class="special">:</span>
<span class="identifier">L1</span> <span class="identifier">Data</span> <span class="number">32</span><span class="identifier">K</span> <span class="special">(</span><span class="identifier">x8</span><span class="special">)</span>
<span class="identifier">L1</span> <span class="identifier">Instruction</span> <span class="number">32</span><span class="identifier">K</span> <span class="special">(</span><span class="identifier">x8</span><span class="special">)</span>
<span class="identifier">L2</span> <span class="identifier">Unified</span> <span class="number">1024</span><span class="identifier">K</span> <span class="special">(</span><span class="identifier">x8</span><span class="special">)</span>
<span class="identifier">L3</span> <span class="identifier">Unified</span> <span class="number">11264</span><span class="identifier">K</span> <span class="special">(</span><span class="identifier">x1</span><span class="special">)</span>
<span class="identifier">Load</span> <span class="identifier">Average</span><span class="special">:</span> <span class="number">0.21</span><span class="special">,</span> <span class="number">0.33</span><span class="special">,</span> <span class="number">0.29</span>
<span class="special">-----------------------------------------</span>
<span class="identifier">Benchmark</span> <span class="identifier">Time</span>
<span class="special">-----------------------------------------</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">1</span> <span class="number">12.5</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">2</span> <span class="number">13.5</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">3</span> <span class="number">14.6</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">4</span> <span class="number">16.0</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">5</span> <span class="number">17.5</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">6</span> <span class="number">19.2</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">7</span> <span class="number">20.7</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">8</span> <span class="number">22.2</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">9</span> <span class="number">23.6</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">10</span> <span class="number">25.2</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">11</span> <span class="number">26.9</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">12</span> <span class="number">28.7</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">13</span> <span class="number">30.5</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">14</span> <span class="number">32.5</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">15</span> <span class="number">34.3</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">16</span> <span class="number">36.3</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">17</span> <span class="number">38.0</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">18</span> <span class="number">39.9</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">19</span> <span class="number">41.8</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">20</span> <span class="number">43.8</span> <span class="identifier">ns</span>
<span class="identifier">UniformReal</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="number">11.5</span> <span class="identifier">ns</span>
</pre>
<h4>
<a name="math_toolkit.sf_poly.gegenbauer.h3"></a>
<span class="phrase"><a name="math_toolkit.sf_poly.gegenbauer.accuracy"></a></span><a class="link" href="gegenbauer.html#math_toolkit.sf_poly.gegenbauer.accuracy">Accuracy</a>
</h4>
<p>
Some representative ULP plots are shown below. The relative accuracy cannot
be controlled at the roots of the polynomial, as is to be expected.
</p>
<p>
<span class="inlinemediaobject"><object type="image/svg+xml" data="../../../graphs/gegenbauer_ulp_3.svg"></object></span> <span class="inlinemediaobject"><object type="image/svg+xml" data="../../../graphs/gegenbauer_ulp_5.svg"></object></span>
<span class="inlinemediaobject"><object type="image/svg+xml" data="../../../graphs/gegenbauer_ulp_9.svg"></object></span>
</p>
<h4>
<a name="math_toolkit.sf_poly.gegenbauer.h4"></a>
<span class="phrase"><a name="math_toolkit.sf_poly.gegenbauer.caveats"></a></span><a class="link" href="gegenbauer.html#math_toolkit.sf_poly.gegenbauer.caveats">Caveats</a>
</h4>
<p>
Some programs define the Gegenbauer polynomial with λ = 0 via renormalization
(which makes them Chebyshev polynomials). We do not follow this convention:
In this case, only the zeroth Gegenbauer polynomial is nonzero.
</p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright © 2006-2020 Nikhar Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher
Kormanyos, Hubert Holin, Bruno Lalande, John Maddock, Evan Miller, Jeremy Murphy,
Matthew Pulver, Johan Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson,
Thijs van den Berg, Daryle Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="cardinal_b_splines.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../sf_poly.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="jacobi.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>