mirror of
https://github.com/boostorg/math.git
synced 2026-02-15 01:02:14 +00:00
172 lines
5.4 KiB
C++
172 lines
5.4 KiB
C++
/*
|
|
* Copyright Nick Thompson, 2017
|
|
* Use, modification and distribution are subject to the
|
|
* Boost Software License, Version 1.0. (See accompanying file
|
|
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
*/
|
|
#define BOOST_TEST_MODULE naive_monte_carlo_test
|
|
#include <boost/type_index.hpp>
|
|
#include <boost/test/included/unit_test.hpp>
|
|
#include <boost/test/floating_point_comparison.hpp>
|
|
#include <boost/math/constants/constants.hpp>
|
|
#include <boost/math/quadrature/naive_monte_carlo.hpp>
|
|
|
|
using std::vector;
|
|
using std::pair;
|
|
using boost::math::constants::pi;
|
|
using boost::math::quadrature::naive_monte_carlo;
|
|
|
|
template<class Real>
|
|
void test_pi()
|
|
{
|
|
std::cout << "Testing pi is calculated correctly using Monte-Carlo on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
|
|
auto g = [](std::vector<Real> const & x)->Real
|
|
{
|
|
Real r = x[0]*x[0]+x[1]*x[1];
|
|
if (r <= 1)
|
|
{
|
|
return 4;
|
|
}
|
|
return 0;
|
|
};
|
|
|
|
std::vector<std::pair<Real, Real>> bounds{{0, 1}, {0, 1}};
|
|
naive_monte_carlo<Real, decltype(g)> mc(g, bounds, (Real) 0.0005);
|
|
|
|
auto task = mc.integrate();
|
|
Real pi_estimated = task.get();
|
|
if (abs(pi_estimated - pi<Real>())/pi<Real>() > 0.005)
|
|
{
|
|
std::cout << "Error in estimation of pi too high, function calls: " << mc.calls() << "\n";
|
|
BOOST_CHECK_CLOSE_FRACTION(pi_estimated, pi<Real>(), 0.005);
|
|
}
|
|
|
|
}
|
|
|
|
template<class Real>
|
|
void test_constant()
|
|
{
|
|
std::cout << "Testing constants are integrated correctly using Monte-Carlo on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
|
|
auto g = [](std::vector<Real> const & x)->Real
|
|
{
|
|
return 1;
|
|
};
|
|
|
|
std::vector<std::pair<Real, Real>> bounds{{0, 1}, {0, 1}};
|
|
naive_monte_carlo<Real, decltype(g)> mc(g, bounds, (Real) 0.0001);
|
|
|
|
auto task = mc.integrate();
|
|
Real one = task.get();
|
|
BOOST_CHECK_CLOSE_FRACTION(one, 1, 0.001);
|
|
BOOST_CHECK_SMALL(mc.current_error_estimate(), std::numeric_limits<Real>::epsilon());
|
|
BOOST_CHECK(mc.calls() > 1000);
|
|
}
|
|
|
|
template<class Real>
|
|
void test_nan()
|
|
{
|
|
std::cout << "Testing that a reasonable action is performed by the Monte-Carlo integrator when singularities are hit on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
|
|
auto g = [](std::vector<Real> const & x)->Real
|
|
{
|
|
return (Real) 1/ (Real) 0;
|
|
};
|
|
|
|
std::vector<std::pair<Real, Real>> bounds{{0, 1}, {0, 1}};
|
|
naive_monte_carlo<Real, decltype(g)> mc(g, bounds, (Real) 0.0001);
|
|
|
|
auto task = mc.integrate();
|
|
Real result = task.get();
|
|
// I think this is reasonable, but should it throw an exception?
|
|
BOOST_CHECK(std::isnan(result));
|
|
}
|
|
|
|
template<class Real>
|
|
void test_exception_from_integrand()
|
|
{
|
|
std::cout << "Testing that a reasonable action is performed by the Monte-Carlo integrator when the integrand throws an exception on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
|
|
auto g = [](std::vector<Real> const & x)->Real
|
|
{
|
|
if (x[0] > 0.5 && x[0] < 0.5001)
|
|
{
|
|
throw std::domain_error("You have done something wrong.\n");
|
|
}
|
|
return (Real) 1;
|
|
};
|
|
|
|
std::vector<std::pair<Real, Real>> bounds{{0, 1}, {0, 1}};
|
|
naive_monte_carlo<Real, decltype(g)> mc(g, bounds, (Real) 0.0001);
|
|
|
|
auto task = mc.integrate();
|
|
bool caught_exception = false;
|
|
try
|
|
{
|
|
Real result = task.get();
|
|
}
|
|
catch(std::exception const & e)
|
|
{
|
|
caught_exception = true;
|
|
}
|
|
BOOST_CHECK(caught_exception);
|
|
}
|
|
|
|
|
|
template<class Real>
|
|
void test_cancel_and_restart()
|
|
{
|
|
std::cout << "Testing that cancellation and restarting works on naive Monte-Carlo integration on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
|
|
Real exact = 1.3932039296856768591842462603255;
|
|
Real A = 1.0 / (pi<Real>() * pi<Real>() * pi<Real>());
|
|
auto g = [&](std::vector<Real> const & x)
|
|
{
|
|
return A / (1.0 - cos(x[0])*cos(x[1])*cos(x[2]));
|
|
};
|
|
vector<pair<Real, Real>> bounds{{0, pi<Real>()}, {0, pi<Real>()}, {0, pi<Real>()}};
|
|
naive_monte_carlo<Real, decltype(g)> mc(g, bounds, (Real) 0.05);
|
|
|
|
auto task = mc.integrate();
|
|
mc.cancel();
|
|
double y = task.get();
|
|
// Super low tolerance; because it got canceled so fast:
|
|
BOOST_CHECK_CLOSE_FRACTION(y, exact, 1.0);
|
|
|
|
mc.update_target_error((Real) 0.01);
|
|
task = mc.integrate();
|
|
y = task.get();
|
|
BOOST_CHECK_CLOSE_FRACTION(y, exact, 0.1);
|
|
}
|
|
|
|
template<class Real>
|
|
void test_variance()
|
|
{
|
|
std::cout << "Testing that variance computed by naive Monte-Carlo integration converges to integral formula on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
|
|
Real exact_variance = (Real) 1/(Real) 12;
|
|
auto g = [&](std::vector<Real> const & x)
|
|
{
|
|
return x[0];
|
|
};
|
|
vector<pair<Real, Real>> bounds{{0, 1}};
|
|
naive_monte_carlo<Real, decltype(g)> mc(g, bounds, (Real) 0.001);
|
|
|
|
auto task = mc.integrate();
|
|
double y = task.get();
|
|
BOOST_CHECK_CLOSE_FRACTION(y, 0.5, 0.01);
|
|
BOOST_CHECK_CLOSE_FRACTION(mc.variance(), exact_variance, 0.01);
|
|
}
|
|
|
|
|
|
|
|
BOOST_AUTO_TEST_CASE(naive_monte_carlo_test)
|
|
{
|
|
test_nan<float>();
|
|
test_pi<float>();
|
|
test_pi<double>();
|
|
//test_pi<long double>();
|
|
test_constant<float>();
|
|
test_constant<double>();
|
|
//test_constant<long double>();
|
|
test_cancel_and_restart<float>();
|
|
test_exception_from_integrand<float>();
|
|
test_variance<float>();
|
|
test_variance<double>();
|
|
}
|