mirror of
https://github.com/boostorg/math.git
synced 2026-01-19 04:22:09 +00:00
495 lines
22 KiB
C++
495 lines
22 KiB
C++
// (C) Copyright John Maddock 2007.
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0. (See accompanying file
|
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#include <boost/math/concepts/real_concept.hpp>
|
|
#include <boost/test/included/test_exec_monitor.hpp>
|
|
#include <boost/test/floating_point_comparison.hpp>
|
|
#include <boost/math/special_functions/bessel.hpp>
|
|
#include <boost/type_traits/is_floating_point.hpp>
|
|
#include <boost/array.hpp>
|
|
#include <boost/lambda/lambda.hpp>
|
|
#include <boost/lambda/bind.hpp>
|
|
|
|
#include "handle_test_result.hpp"
|
|
#include "test_bessel_hooks.hpp"
|
|
|
|
//
|
|
// DESCRIPTION:
|
|
// ~~~~~~~~~~~~
|
|
//
|
|
// This file tests the bessel functions. There are two sets of tests, spot
|
|
// tests which compare our results with selected values computed
|
|
// using the online special function calculator at
|
|
// functions.wolfram.com, while the bulk of the accuracy tests
|
|
// use values generated with NTL::RR at 1000-bit precision
|
|
// and our generic versions of these functions.
|
|
//
|
|
// Note that when this file is first run on a new platform many of
|
|
// these tests will fail: the default accuracy is 1 epsilon which
|
|
// is too tight for most platforms. In this situation you will
|
|
// need to cast a human eye over the error rates reported and make
|
|
// a judgement as to whether they are acceptable. Either way please
|
|
// report the results to the Boost mailing list. Acceptable rates of
|
|
// error are marked up below as a series of regular expressions that
|
|
// identify the compiler/stdlib/platform/data-type/test-data/test-function
|
|
// along with the maximum expected peek and RMS mean errors for that
|
|
// test.
|
|
//
|
|
|
|
void expected_results()
|
|
{
|
|
//
|
|
// Define the max and mean errors expected for
|
|
// various compilers and platforms.
|
|
//
|
|
const char* largest_type;
|
|
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
|
|
if(boost::math::policies::digits<double, boost::math::policies::policy<> >() == boost::math::policies::digits<long double, boost::math::policies::policy<> >())
|
|
{
|
|
largest_type = "(long\\s+)?double|real_concept";
|
|
}
|
|
else
|
|
{
|
|
largest_type = "long double|real_concept";
|
|
}
|
|
#else
|
|
largest_type = "(long\\s+)?double";
|
|
#endif
|
|
//
|
|
// HP-UX specific rates:
|
|
//
|
|
// Does this need more investigation or is test data limited????
|
|
add_expected_result(
|
|
".*", // compiler
|
|
".*", // stdlib
|
|
"HP-UX", // platform
|
|
"double", // test type(s)
|
|
".*Tricky.*", // test data group
|
|
".*", 100000, 100000); // test function
|
|
add_expected_result(
|
|
".*", // compiler
|
|
".*", // stdlib
|
|
"HP-UX", // platform
|
|
largest_type, // test type(s)
|
|
".*J0.*Tricky.*", // test data group
|
|
".*", 80000000000LL, 80000000000LL); // test function
|
|
add_expected_result(
|
|
".*", // compiler
|
|
".*", // stdlib
|
|
"HP-UX", // platform
|
|
largest_type, // test type(s)
|
|
".*J1.*Tricky.*", // test data group
|
|
".*", 3000000, 2000000); // test function
|
|
add_expected_result(
|
|
".*", // compiler
|
|
".*", // stdlib
|
|
"HP-UX", // platform
|
|
largest_type, // test type(s)
|
|
".*J.*Tricky.*", // test data group
|
|
".*", 3000, 500); // test function
|
|
|
|
//
|
|
// Mac OS X:
|
|
//
|
|
add_expected_result(
|
|
".*", // compiler
|
|
".*", // stdlib
|
|
"Mac OS", // platform
|
|
largest_type, // test type(s)
|
|
"Bessel JN.*", // test data group
|
|
".*", 40000, 20000); // test function
|
|
add_expected_result(
|
|
".*", // compiler
|
|
".*", // stdlib
|
|
"Mac OS", // platform
|
|
largest_type, // test type(s)
|
|
"Bessel J:.*", // test data group
|
|
".*", 50000, 20000); // test function
|
|
|
|
// This shouldn't be required, could be limited test data precision
|
|
// i.e. not enough bits in double input to get double result.
|
|
add_expected_result(
|
|
".*", // compiler
|
|
".*", // stdlib
|
|
"Mac OS", // platform
|
|
"double", // test type(s)
|
|
".*Tricky.*", // test data group
|
|
".*", 100000, 100000); // test function
|
|
|
|
|
|
//
|
|
// Linux specific results:
|
|
//
|
|
// sin and cos appear to have only double precision for large
|
|
// arguments on some linux distros:
|
|
//
|
|
add_expected_result(
|
|
".*", // compiler
|
|
".*", // stdlib
|
|
"linux", // platform
|
|
largest_type, // test type(s)
|
|
".*J:.*", // test data group
|
|
".*", 40000, 30000); // test function
|
|
|
|
|
|
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
|
|
if((std::numeric_limits<double>::digits != std::numeric_limits<long double>::digits)
|
|
&& (std::numeric_limits<long double>::digits < 90))
|
|
{
|
|
// some errors spill over into type double as well:
|
|
add_expected_result(
|
|
".*", // compiler
|
|
".*", // stdlib
|
|
".*", // platform
|
|
"double", // test type(s)
|
|
".*J0.*Tricky.*", // test data group
|
|
".*", 400000, 400000); // test function
|
|
add_expected_result(
|
|
".*", // compiler
|
|
".*", // stdlib
|
|
".*", // platform
|
|
"double", // test type(s)
|
|
".*J1.*Tricky.*", // test data group
|
|
".*", 5000, 5000); // test function
|
|
add_expected_result(
|
|
".*", // compiler
|
|
".*", // stdlib
|
|
".*", // platform
|
|
"double", // test type(s)
|
|
".*(JN|j).*|.*Tricky.*", // test data group
|
|
".*", 50, 50); // test function
|
|
add_expected_result(
|
|
".*", // compiler
|
|
".*", // stdlib
|
|
".*", // platform
|
|
"double", // test type(s)
|
|
".*", // test data group
|
|
".*", 30, 30); // test function
|
|
//
|
|
// and we have a few cases with higher limits as well:
|
|
//
|
|
add_expected_result(
|
|
".*", // compiler
|
|
".*", // stdlib
|
|
".*", // platform
|
|
largest_type, // test type(s)
|
|
".*J0.*Tricky.*", // test data group
|
|
".*", 400000000, 400000000); // test function
|
|
add_expected_result(
|
|
".*", // compiler
|
|
".*", // stdlib
|
|
".*", // platform
|
|
largest_type, // test type(s)
|
|
".*J1.*Tricky.*", // test data group
|
|
".*", 5000000, 5000000); // test function
|
|
add_expected_result(
|
|
".*", // compiler
|
|
".*", // stdlib
|
|
".*", // platform
|
|
largest_type, // test type(s)
|
|
".*(JN|j).*|.*Tricky.*", // test data group
|
|
".*", 33000, 20000); // test function
|
|
}
|
|
#endif
|
|
add_expected_result(
|
|
".*", // compiler
|
|
".*", // stdlib
|
|
".*", // platform
|
|
largest_type, // test type(s)
|
|
".*J0.*Tricky.*", // test data group
|
|
".*", 400000000, 400000000); // test function
|
|
add_expected_result(
|
|
".*", // compiler
|
|
".*", // stdlib
|
|
".*", // platform
|
|
largest_type, // test type(s)
|
|
".*J1.*Tricky.*", // test data group
|
|
".*", 5000000, 5000000); // test function
|
|
add_expected_result(
|
|
".*", // compiler
|
|
".*", // stdlib
|
|
".*", // platform
|
|
largest_type, // test type(s)
|
|
".*JN.*Integer.*", // test data group
|
|
".*", 30000, 10000); // test function
|
|
add_expected_result(
|
|
".*", // compiler
|
|
".*", // stdlib
|
|
".*", // platform
|
|
largest_type, // test type(s)
|
|
".*(JN|j).*|.*Tricky.*", // test data group
|
|
".*", 1500, 700); // test function
|
|
add_expected_result(
|
|
".*", // compiler
|
|
".*", // stdlib
|
|
".*", // platform
|
|
largest_type, // test type(s)
|
|
".*", // test data group
|
|
".*", 40, 20); // test function
|
|
//
|
|
// Finish off by printing out the compiler/stdlib/platform names,
|
|
// we do this to make it easier to mark up expected error rates.
|
|
//
|
|
std::cout << "Tests run with " << BOOST_COMPILER << ", "
|
|
<< BOOST_STDLIB << ", " << BOOST_PLATFORM << std::endl;
|
|
}
|
|
|
|
template <class T>
|
|
void do_test_cyl_bessel_j(const T& data, const char* type_name, const char* test_name)
|
|
{
|
|
typedef typename T::value_type row_type;
|
|
typedef typename row_type::value_type value_type;
|
|
|
|
typedef value_type (*pg)(value_type, value_type);
|
|
pg funcp = boost::math::cyl_bessel_j;
|
|
|
|
boost::math::tools::test_result<value_type> result;
|
|
|
|
std::cout << "Testing " << test_name << " with type " << type_name
|
|
<< "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";
|
|
|
|
//
|
|
// test cyl_bessel_j against data:
|
|
//
|
|
result = boost::math::tools::test(
|
|
data,
|
|
boost::lambda::bind(funcp,
|
|
boost::lambda::ret<value_type>(boost::lambda::_1[0]),
|
|
boost::lambda::ret<value_type>(boost::lambda::_1[1])),
|
|
boost::lambda::ret<value_type>(boost::lambda::_1[2]));
|
|
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::cyl_bessel_j", test_name);
|
|
std::cout << std::endl;
|
|
|
|
#ifdef TEST_OTHER
|
|
if(boost::is_floating_point<value_type>::value)
|
|
{
|
|
funcp = other::cyl_bessel_j;
|
|
|
|
//
|
|
// test other::cyl_bessel_j against data:
|
|
//
|
|
result = boost::math::tools::test(
|
|
data,
|
|
boost::lambda::bind(funcp,
|
|
boost::lambda::ret<value_type>(boost::lambda::_1[0]),
|
|
boost::lambda::ret<value_type>(boost::lambda::_1[1])),
|
|
boost::lambda::ret<value_type>(boost::lambda::_1[2]));
|
|
handle_test_result(result, data[result.worst()], result.worst(), type_name, "other::cyl_bessel_j", test_name);
|
|
std::cout << std::endl;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
template <class T>
|
|
T cyl_bessel_j_int_wrapper(T v, T x)
|
|
{
|
|
return static_cast<T>(boost::math::cyl_bessel_j(boost::math::tools::real_cast<int>(v), x));
|
|
}
|
|
|
|
|
|
template <class T>
|
|
void do_test_cyl_bessel_j_int(const T& data, const char* type_name, const char* test_name)
|
|
{
|
|
typedef typename T::value_type row_type;
|
|
typedef typename row_type::value_type value_type;
|
|
|
|
typedef value_type (*pg)(value_type, value_type);
|
|
pg funcp = cyl_bessel_j_int_wrapper;
|
|
|
|
boost::math::tools::test_result<value_type> result;
|
|
|
|
std::cout << "Testing " << test_name << " with type " << type_name
|
|
<< "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";
|
|
|
|
//
|
|
// test cyl_bessel_j against data:
|
|
//
|
|
result = boost::math::tools::test(
|
|
data,
|
|
boost::lambda::bind(funcp,
|
|
boost::lambda::ret<value_type>(boost::lambda::_1[0]),
|
|
boost::lambda::ret<value_type>(boost::lambda::_1[1])),
|
|
boost::lambda::ret<value_type>(boost::lambda::_1[2]));
|
|
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::cyl_bessel_j", test_name);
|
|
std::cout << std::endl;
|
|
}
|
|
|
|
template <class T>
|
|
void do_test_sph_bessel_j(const T& data, const char* type_name, const char* test_name)
|
|
{
|
|
typedef typename T::value_type row_type;
|
|
typedef typename row_type::value_type value_type;
|
|
|
|
typedef value_type (*pg)(unsigned, value_type);
|
|
pg funcp = boost::math::sph_bessel;
|
|
|
|
typedef int (*cast_t)(value_type);
|
|
cast_t rc = &boost::math::tools::real_cast<int, value_type>;
|
|
|
|
boost::math::tools::test_result<value_type> result;
|
|
|
|
std::cout << "Testing " << test_name << " with type " << type_name
|
|
<< "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";
|
|
|
|
//
|
|
// test sph_bessel against data:
|
|
//
|
|
result = boost::math::tools::test(
|
|
data,
|
|
boost::lambda::bind(funcp,
|
|
boost::lambda::ret<int>(
|
|
boost::lambda::bind(
|
|
rc,
|
|
boost::lambda::ret<value_type>(boost::lambda::_1[0]))),
|
|
boost::lambda::ret<value_type>(boost::lambda::_1[1])),
|
|
boost::lambda::ret<value_type>(boost::lambda::_1[2]));
|
|
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::sph_bessel", test_name);
|
|
std::cout << std::endl;
|
|
}
|
|
|
|
template <class T>
|
|
void test_bessel(T, const char* name)
|
|
{
|
|
//
|
|
// The actual test data is rather verbose, so it's in a separate file
|
|
//
|
|
// The contents are as follows, each row of data contains
|
|
// three items, input value a, input value b and erf(a, b):
|
|
//
|
|
// function values calculated on http://functions.wolfram.com/
|
|
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
|
|
static const boost::array<boost::array<T, 3>, 8> j0_data = {{
|
|
{ SC_(0), SC_(0), SC_(1) },
|
|
{ SC_(0), SC_(1), SC_(0.7651976865579665514497175261026632209093) },
|
|
{ SC_(0), SC_(-2), SC_(0.2238907791412356680518274546499486258252) },
|
|
{ SC_(0), SC_(4), SC_(-0.3971498098638473722865907684516980419756) },
|
|
{ SC_(0), SC_(-8), SC_(0.1716508071375539060908694078519720010684) },
|
|
{ SC_(0), SC_(1e-05), SC_(0.999999999975000000000156249999999565972) },
|
|
{ SC_(0), SC_(1e-10), SC_(0.999999999999999999997500000000000000000) },
|
|
{ SC_(0), SC_(-1e+01), SC_(-0.2459357644513483351977608624853287538296) },
|
|
}};
|
|
static const boost::array<boost::array<T, 3>, 6> j0_tricky = {{
|
|
// Big numbers make the accuracy of std::sin the limiting factor:
|
|
{ SC_(0), SC_(1e+03), SC_(0.02478668615242017456133073111569370878617) },
|
|
{ SC_(0), SC_(1e+05), SC_(-0.001719201116235972192570601477073201747532) },
|
|
// test at the roots:
|
|
{ SC_(0), SC_(2521642)/(1024 * 1024), SC_(1.80208819970046790002973759410972422387259992955354630042138e-7) },
|
|
{ SC_(0), SC_(5788221)/(1024 * 1024), SC_(-1.37774249380686777043369399806210229535671843632174587432454e-7) },
|
|
{ SC_(0), SC_(9074091)/(1024 * 1024), SC_(1.03553057441100845081018471279571355857520645127532785991335e-7) },
|
|
{ SC_(0), SC_(12364320)/(1024 * 1024), SC_(-3.53017140778223781420794006033810387155048392363051866610931e-9) }
|
|
}};
|
|
|
|
static const boost::array<boost::array<T, 3>, 8> j1_data = {
|
|
SC_(1), SC_(0), SC_(0),
|
|
SC_(1), SC_(1), SC_(0.4400505857449335159596822037189149131274),
|
|
SC_(1), SC_(-2), SC_(-0.5767248077568733872024482422691370869203),
|
|
SC_(1), SC_(4), SC_(-6.604332802354913614318542080327502872742e-02),
|
|
SC_(1), SC_(-8), SC_(-0.2346363468539146243812766515904546115488),
|
|
SC_(1), SC_(1e-05), SC_(4.999999999937500000000260416666666124132e-06),
|
|
SC_(1), SC_(1e-10), SC_(4.999999999999999999993750000000000000000e-11),
|
|
SC_(1), SC_(-1e+01), SC_(-4.347274616886143666974876802585928830627e-02),
|
|
};
|
|
static const boost::array<boost::array<T, 3>, 5> j1_tricky = {
|
|
// Big numbers make the accuracy of std::sin the limiting factor:
|
|
SC_(1), SC_(1e+03), SC_(4.728311907089523917576071901216916285418e-03),
|
|
SC_(1), SC_(1e+05), SC_(1.846757562882567716362123967114215743694e-03),
|
|
// test zeros:
|
|
SC_(1), SC_(4017834)/(1024*1024), SC_(3.53149033321258645807835062770856949751958513973522222203044e-7),
|
|
SC_(1), SC_(7356375)/(1024*1024), SC_(-2.31227973111067286051984021150135526024117175836722748404342e-7),
|
|
SC_(1), SC_(10667654)/(1024*1024), SC_(1.24591331097191900488116495350277530373473085499043086981229e-7),
|
|
};
|
|
|
|
static const boost::array<boost::array<T, 3>, 14> jn_data = {
|
|
SC_(2), SC_(0), SC_(0),
|
|
SC_(2), SC_(1e-02), SC_(1.249989583365885362413250958437642113452e-05),
|
|
SC_(5), SC_(10), SC_(-0.2340615281867936404436949416457777864635),
|
|
SC_(5), SC_(-10), SC_(0.2340615281867936404436949416457777864635),
|
|
SC_(-5), SC_(1e+06), SC_(7.259643842453285052375779970433848914846e-04),
|
|
SC_(5), SC_(1e+06), SC_(-0.000725964384245328505237577997043384891484649290328285235308619),
|
|
SC_(-5), SC_(-1), SC_(2.497577302112344313750655409880451981584e-04),
|
|
SC_(10), SC_(10), SC_(0.2074861066333588576972787235187534280327),
|
|
SC_(10), SC_(-10), SC_(0.2074861066333588576972787235187534280327),
|
|
SC_(10), SC_(-5), SC_(1.467802647310474131107532232606627020895e-03),
|
|
SC_(-10), SC_(1e+06), SC_(-3.310793117604488741264958559035744460210e-04),
|
|
SC_(10), SC_(1e+06), SC_(-0.000331079311760448874126495855903574446020957243277028930713243),
|
|
SC_(1e+02), SC_(8e+01), SC_(4.606553064823477354141298259169874909670e-06),
|
|
SC_(1e+03), SC_(1e+05), SC_(1.283178112502480365195139312635384057363e-03),
|
|
};
|
|
do_test_cyl_bessel_j(j0_data, name, "Bessel J0: Mathworld Data");
|
|
do_test_cyl_bessel_j(j0_tricky, name, "Bessel J0: Mathworld Data (Tricky cases)");
|
|
do_test_cyl_bessel_j(j1_data, name, "Bessel J1: Mathworld Data");
|
|
do_test_cyl_bessel_j(j1_tricky, name, "Bessel J1: Mathworld Data (tricky cases)");
|
|
do_test_cyl_bessel_j(jn_data, name, "Bessel JN: Mathworld Data");
|
|
|
|
do_test_cyl_bessel_j_int(j0_data, name, "Bessel J0: Mathworld Data (Integer Version)");
|
|
do_test_cyl_bessel_j_int(j0_tricky, name, "Bessel J0: Mathworld Data (Tricky cases) (Integer Version)");
|
|
do_test_cyl_bessel_j_int(j1_data, name, "Bessel J1: Mathworld Data (Integer Version)");
|
|
do_test_cyl_bessel_j_int(j1_tricky, name, "Bessel J1: Mathworld Data (tricky cases) (Integer Version)");
|
|
do_test_cyl_bessel_j_int(jn_data, name, "Bessel JN: Mathworld Data (Integer Version)");
|
|
|
|
static const boost::array<boost::array<T, 3>, 17> jv_data = {
|
|
//SC_(-2.4), SC_(0), std::numeric_limits<T>::infinity(),
|
|
SC_(2457)/1024, SC_(1)/1024, SC_(3.80739920118603335646474073457326714709615200130620574875292e-9),
|
|
SC_(5.5), SC_(3217)/1024, SC_(0.0281933076257506091621579544064767140470089107926550720453038),
|
|
SC_(-5.5), SC_(3217)/1024, SC_(-2.55820064470647911823175836997490971806135336759164272675969),
|
|
SC_(-5.5), SC_(1e+04), SC_(2.449843111985605522111159013846599118397e-03),
|
|
SC_(5.5), SC_(1e+04), SC_(0.00759343502722670361395585198154817047185480147294665270646578),
|
|
SC_(5.5), SC_(1e+06), SC_(-0.000747424248595630177396350688505919533097973148718960064663632),
|
|
SC_(5.125), SC_(1e+06), SC_(-0.000776600124835704280633640911329691642748783663198207360238214),
|
|
SC_(5.875), SC_(1e+06), SC_(-0.000466322721115193071631008581529503095819705088484386434589780),
|
|
SC_(0.5), SC_(101), SC_(0.0358874487875643822020496677692429287863419555699447066226409),
|
|
SC_(-5.5), SC_(1e+04), SC_(0.00244984311198560552211115901384659911839737686676766460822577),
|
|
SC_(-5.5), SC_(1e+06), SC_(0.000279243200433579511095229508894156656558211060453622750659554),
|
|
SC_(-0.5), SC_(101), SC_(0.0708184798097594268482290389188138201440114881159344944791454),
|
|
SC_(-10486074) / (1024*1024), SC_(1)/1024, SC_(1.41474013160494695750009004222225969090304185981836460288562e35),
|
|
SC_(-10486074) / (1024*1024), SC_(15), SC_(-0.0902239288885423309568944543848111461724911781719692852541489),
|
|
SC_(10486074) / (1024*1024), SC_(1e+02), SC_(-0.0547064914615137807616774867984047583596945624129838091326863),
|
|
SC_(10486074) / (1024*1024), SC_(2e+04), SC_(-0.00556783614400875611650958980796060611309029233226596737701688),
|
|
SC_(-10486074) / (1024*1024), SC_(1e+02), SC_(-0.0547613660316806551338637153942604550779513947674222863858713),
|
|
};
|
|
do_test_cyl_bessel_j(jv_data, name, "Bessel J: Mathworld Data");
|
|
|
|
#undef SC_
|
|
|
|
#include "bessel_j_int_data.ipp"
|
|
do_test_cyl_bessel_j(bessel_j_int_data, name, "Bessel JN: Random Data");
|
|
|
|
#include "bessel_j_data.ipp"
|
|
do_test_cyl_bessel_j(bessel_j_data, name, "Bessel J: Random Data");
|
|
|
|
#include "bessel_j_large_data.ipp"
|
|
do_test_cyl_bessel_j(bessel_j_large_data, name, "Bessel J: Random Data (Tricky large values)");
|
|
|
|
#include "sph_bessel_data.ipp"
|
|
do_test_sph_bessel_j(sph_bessel_data, name, "Bessel j: Random Data");
|
|
}
|
|
|
|
int test_main(int, char* [])
|
|
{
|
|
#ifdef TEST_GSL
|
|
gsl_set_error_handler_off();
|
|
#endif
|
|
expected_results();
|
|
|
|
test_bessel(0.1F, "float");
|
|
test_bessel(0.1, "double");
|
|
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
|
|
test_bessel(0.1L, "long double");
|
|
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
|
|
test_bessel(boost::math::concepts::real_concept(0.1), "real_concept");
|
|
#endif
|
|
#else
|
|
std::cout << "<note>The long double tests have been disabled on this platform "
|
|
"either because the long double overloads of the usual math functions are "
|
|
"not available at all, or because they are too inaccurate for these tests "
|
|
"to pass.</note>" << std::cout;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
|