2
0
mirror of https://github.com/boostorg/math.git synced 2026-01-29 19:52:08 +00:00
Files
math/doc/html/math_toolkit/fourier_integrals.html
2019-06-30 10:11:22 -04:00

145 lines
14 KiB
HTML

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Fourier Integrals</title>
<link rel="stylesheet" href="../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../index.html" title="Math Toolkit 2.9.0">
<link rel="up" href="../quadrature.html" title="Chapter&#160;12.&#160;Quadrature and Differentiation">
<link rel="prev" href="double_exponential/de_refes.html" title="References">
<link rel="next" href="naive_monte_carlo.html" title="Naive Monte Carlo Integration">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
<td align="center"><a href="../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="double_exponential/de_refes.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quadrature.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="naive_monte_carlo.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="math_toolkit.fourier_integrals"></a><a class="link" href="fourier_integrals.html" title="Fourier Integrals">Fourier Integrals</a>
</h2></div></div></div>
<h4>
<a name="math_toolkit.fourier_integrals.h0"></a>
<span class="phrase"><a name="math_toolkit.fourier_integrals.synopsis"></a></span><a class="link" href="fourier_integrals.html#math_toolkit.fourier_integrals.synopsis">Synopsis</a>
</h4>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">quadrature</span><span class="special">/</span><span class="identifier">ooura_fourier_integrals</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
<span class="keyword">namespace</span> <span class="identifier">boost</span> <span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span> <span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">quadrature</span> <span class="special">{</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Real</span><span class="special">&gt;</span>
<span class="keyword">class</span> <span class="identifier">ooura_fourier_sin</span> <span class="special">{</span>
<span class="keyword">public</span><span class="special">:</span>
<span class="identifier">ooura_fourier_sin</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">Real</span> <span class="identifier">relative_error_tolerance</span> <span class="special">=</span> <span class="identifier">tools</span><span class="special">::</span><span class="identifier">root_epsilon</span><span class="special">&lt;</span><span class="identifier">Real</span><span class="special">&gt;(),</span> <span class="identifier">size_t</span> <span class="identifier">levels</span> <span class="special">=</span> <span class="keyword">sizeof</span><span class="special">(</span><span class="identifier">Real</span><span class="special">));</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">F</span><span class="special">&gt;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">Real</span><span class="special">,</span> <span class="identifier">Real</span><span class="special">&gt;</span> <span class="identifier">integrate</span><span class="special">(</span><span class="identifier">F</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">f</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">omega</span><span class="special">);</span>
<span class="special">};</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Real</span><span class="special">&gt;</span>
<span class="keyword">class</span> <span class="identifier">ooura_fourier_cos</span> <span class="special">{</span>
<span class="keyword">public</span><span class="special">:</span>
<span class="identifier">ooura_fourier_cos</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">Real</span> <span class="identifier">relative_error_tolerance</span> <span class="special">=</span> <span class="identifier">tools</span><span class="special">::</span><span class="identifier">root_epsilon</span><span class="special">&lt;</span><span class="identifier">Real</span><span class="special">&gt;(),</span> <span class="identifier">size_t</span> <span class="identifier">levels</span> <span class="special">=</span> <span class="keyword">sizeof</span><span class="special">(</span><span class="identifier">Real</span><span class="special">))</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">F</span><span class="special">&gt;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">Real</span><span class="special">,</span> <span class="identifier">Real</span><span class="special">&gt;</span> <span class="identifier">integrate</span><span class="special">(</span><span class="identifier">F</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">f</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">omega</span><span class="special">);</span>
<span class="special">};</span>
<span class="special">}}}</span>
</pre>
<p>
Ooura's method for Fourier integrals computes
</p>
<p>
&#8747;<sub>0</sub><sup>&#8734;</sup> f(t)sin(&#969; t) dt
</p>
<p>
and
</p>
<p>
&#8747;<sub>0</sub><sup>&#8734;</sup> f(t)cos(&#969; t) dt
</p>
<p>
by a double exponentially decaying transformation. These integrals arise when
computing continuous Fourier transform of odd and even functions, respectively.
Oscillatory integrals are known to cause trouble for standard quadrature methods,
so these routines are provided to cope with the most common oscillatory use
case.
</p>
<p>
The basic usage is shown below:
</p>
<pre class="programlisting"><span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">quadrature</span><span class="special">::</span><span class="identifier">ooura_fourier_sin</span><span class="special">;</span>
<span class="keyword">auto</span> <span class="identifier">integrator</span> <span class="special">=</span> <span class="identifier">ooura_fourier_sin</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;();</span>
<span class="keyword">auto</span> <span class="identifier">f</span> <span class="special">=</span> <span class="special">[](</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">)</span> <span class="special">{</span> <span class="keyword">return</span> <span class="number">1</span><span class="special">/</span><span class="identifier">x</span><span class="special">;</span> <span class="special">};</span>
<span class="keyword">double</span> <span class="identifier">omega</span> <span class="special">=</span> <span class="number">1</span><span class="special">;</span>
<span class="keyword">auto</span> <span class="special">[</span><span class="identifier">Is</span><span class="special">,</span> <span class="identifier">relative_error</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">integrator</span><span class="special">.</span><span class="identifier">integrate</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="identifier">omega</span><span class="special">);</span>
</pre>
<p>
The computed value should be &#960;/2. Note that this integrator is more insistent
about examining the error estimate, than (say) tanh-sinh, which just returns
the value of the integral.
</p>
<p>
A classical cosine transform is presented below:
</p>
<pre class="programlisting"><span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">quadrature</span><span class="special">::</span><span class="identifier">ooura_fourier_cos</span><span class="special">;</span>
<span class="keyword">auto</span> <span class="identifier">integrator</span> <span class="special">=</span> <span class="identifier">ooura_fourier_cos</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;();</span>
<span class="keyword">auto</span> <span class="identifier">f</span> <span class="special">=</span> <span class="special">[](</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">)</span> <span class="special">{</span> <span class="keyword">return</span> <span class="number">1</span><span class="special">/(</span><span class="identifier">x</span><span class="special">*</span><span class="identifier">x</span><span class="special">+</span><span class="number">1</span><span class="special">);</span> <span class="special">};</span>
<span class="keyword">double</span> <span class="identifier">omega</span> <span class="special">=</span> <span class="number">1</span><span class="special">;</span>
<span class="keyword">auto</span> <span class="special">[</span><span class="identifier">Ic</span><span class="special">,</span> <span class="identifier">relative_error</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">integrator</span><span class="special">.</span><span class="identifier">integrate</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="identifier">omega</span><span class="special">);</span>
</pre>
<p>
The value of <code class="computeroutput"><span class="identifier">Ic</span></code> should be &#960;/2e.
</p>
<p>
The integrator precomputes nodes and weights, and hence can be reused for many
different frequencies with good efficiency. The integrator is pimpl'd and hence
can be shared between threads without a memcpy of the nodes and weights.
</p>
<p>
Ooura and Mori's paper identifies criteria for rapid convergence based on the
position of the poles of the integrand in the complex plane. If these poles
are too close to the real axis the convergence is slow. It is not trivial to
predict the convergence rate a priori, so if you are interested in figuring
out if the convergence is rapid compile with <code class="computeroutput"><span class="special">-</span><span class="identifier">DBOOST_MATH_INSTRUMENT_OOURA</span></code> and some amount
of printing will give you a good idea of how well this method is performing.
</p>
<h4>
<a name="math_toolkit.fourier_integrals.h1"></a>
<span class="phrase"><a name="math_toolkit.fourier_integrals.references"></a></span><a class="link" href="fourier_integrals.html#math_toolkit.fourier_integrals.references">References</a>
</h4>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem">
Ooura, Takuya, and Masatake Mori, <span class="emphasis"><em>A robust double exponential
formula for Fourier-type integrals.</em></span> Journal of computational
and applied mathematics 112.1-2 (1999): 229-241.
</li></ul></div>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright &#169; 2006-2010, 2012-2014, 2017 Nikhar
Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
R&#229;de, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
Daryle Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="double_exponential/de_refes.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quadrature.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="naive_monte_carlo.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>