mirror of
https://github.com/boostorg/math.git
synced 2026-01-19 04:22:09 +00:00
708 lines
22 KiB
C++
708 lines
22 KiB
C++
/*
|
|
* Copyright Nick Thompson, 2017
|
|
* Use, modification and distribution are subject to the
|
|
* Boost Software License, Version 1.0. (See accompanying file
|
|
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
*/
|
|
#define BOOST_TEST_MODULE lanczos_smoothing_test
|
|
|
|
#include <random>
|
|
#include <boost/math/constants/constants.hpp>
|
|
#include <boost/accumulators/statistics/sum_kahan.hpp>
|
|
#include <boost/test/included/unit_test.hpp>
|
|
#include <boost/test/floating_point_comparison.hpp>
|
|
#include <boost/math/differentiation/lanczos_smoothing.hpp>
|
|
#include <boost/multiprecision/cpp_bin_float.hpp>
|
|
#include <boost/math/special_functions/next.hpp> // for float_distance
|
|
|
|
using std::abs;
|
|
using std::pow;
|
|
using std::sqrt;
|
|
using std::sin;
|
|
using boost::math::constants::two_pi;
|
|
using boost::multiprecision::cpp_bin_float_50;
|
|
using boost::multiprecision::cpp_bin_float_100;
|
|
using boost::math::differentiation::discrete_lanczos_derivative;
|
|
using boost::math::differentiation::detail::discrete_legendre;
|
|
using boost::math::differentiation::detail::interior_filter;
|
|
using boost::math::differentiation::detail::boundary_filter;
|
|
|
|
template<class RandomAccessContainer1, class RandomAccessContainer2>
|
|
size_t l1_ulp_error(RandomAccessContainer1 const & v1, RandomAccessContainer2 const & v2)
|
|
{
|
|
using std::abs;
|
|
using Real1 = typename RandomAccessContainer1::value_type;
|
|
using Real2 = typename RandomAccessContainer2::value_type;
|
|
BOOST_ASSERT_MSG(sizeof(Real1) <= sizeof(Real2),
|
|
"Second container must contain more accurate value than the first container.");
|
|
BOOST_ASSERT_MSG(v1.size() == v2.size(),
|
|
"Containers must have same size.");
|
|
size_t error = 0;
|
|
for (size_t i = 0; i < v1.size(); ++i)
|
|
{
|
|
auto err = abs(boost::math::float_distance<Real1>(v1[i], static_cast<Real1>(v2[i])));
|
|
if (abs(v2[i]) > std::numeric_limits<Real1>::epsilon())
|
|
{
|
|
error += static_cast<size_t>(err);
|
|
}
|
|
}
|
|
return error;
|
|
}
|
|
|
|
template<class RandomAccessContainer1, class RandomAccessContainer2>
|
|
std::tuple<size_t, typename RandomAccessContainer1::value_type, typename RandomAccessContainer2::value_type> sup_ulp_error(RandomAccessContainer1 const & v1, RandomAccessContainer2 const & v2)
|
|
{
|
|
using std::abs;
|
|
using Real1 = typename RandomAccessContainer1::value_type;
|
|
using Real2 = typename RandomAccessContainer2::value_type;
|
|
BOOST_ASSERT_MSG(sizeof(Real1) <= sizeof(Real2),
|
|
"Second container must contain more accurate value than the first container.");
|
|
BOOST_ASSERT_MSG(v1.size() == v2.size(),
|
|
"Containers must have same size.");
|
|
size_t error = 0;
|
|
Real1 worst_val1 = std::numeric_limits<Real1>::quiet_NaN();
|
|
Real2 worst_val2 = std::numeric_limits<Real2>::quiet_NaN();
|
|
for (size_t i = 0; i < v1.size(); ++i)
|
|
{
|
|
auto err = abs(boost::math::float_distance<Real1>(v1[i], static_cast<Real1>(v2[i])));
|
|
if (err > error)
|
|
{
|
|
error = err;
|
|
worst_val1 = v1[i];
|
|
worst_val2 = v2[i];
|
|
}
|
|
}
|
|
return {error, worst_val1, worst_val2};
|
|
}
|
|
|
|
template<class Real>
|
|
void test_dlp_norms()
|
|
{
|
|
std::cout << "Testing Discrete Legendre Polynomial norms on type " << typeid(Real).name() << "\n";
|
|
Real tol = std::numeric_limits<Real>::epsilon();
|
|
auto dlp = discrete_legendre<Real>(1);
|
|
BOOST_CHECK_CLOSE_FRACTION(dlp.norm_sq(0), 3, tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(dlp.norm_sq(1), 2, tol);
|
|
dlp = discrete_legendre<Real>(2);
|
|
BOOST_CHECK_CLOSE_FRACTION(dlp.norm_sq(0), Real(5)/Real(2), tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(dlp.norm_sq(1), Real(5)/Real(4), tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(dlp.norm_sq(2), Real(3*3*7)/Real(pow(2,6)), 2*tol);
|
|
dlp = discrete_legendre<Real>(200);
|
|
for(size_t r = 0; r < 10; ++r)
|
|
{
|
|
Real calc = dlp.norm_sq(r);
|
|
Real expected = Real(2)/Real(2*r+1);
|
|
// As long as r << n, ||q_r||^2 -> 2/(2r+1) as n->infty
|
|
BOOST_CHECK_CLOSE_FRACTION(calc, expected, 0.05);
|
|
}
|
|
|
|
}
|
|
|
|
template<class Real>
|
|
void test_dlp_evaluation()
|
|
{
|
|
std::cout << "Testing evaluation of Discrete Legendre polynomials on type " << typeid(Real).name() << "\n";
|
|
Real tol = std::numeric_limits<Real>::epsilon();
|
|
size_t n = 25;
|
|
auto dlp = discrete_legendre<Real>(n);
|
|
Real x = 0.72;
|
|
Real q0 = dlp(x, 0);
|
|
BOOST_TEST(q0 == 1);
|
|
Real q1 = dlp(x, 1);
|
|
BOOST_TEST(q1 == x);
|
|
Real q2 = dlp(x, 2);
|
|
int N = 2*n+1;
|
|
Real expected = 0.5*(3*x*x - Real(N*N - 1)/Real(4*n*n));
|
|
BOOST_CHECK_CLOSE_FRACTION(q2, expected, tol);
|
|
Real q3 = dlp(x, 3);
|
|
expected = (x/3)*(5*expected - (Real(N*N - 4))/(2*n*n));
|
|
BOOST_CHECK_CLOSE_FRACTION(q3, expected, 2*tol);
|
|
|
|
// q_r(x) is even for even r, and odd for odd r:
|
|
for (size_t n = 8; n < 22; ++n)
|
|
{
|
|
dlp = discrete_legendre<Real>(n);
|
|
for(size_t r = 2; r <= n; ++r)
|
|
{
|
|
if (r & 1)
|
|
{
|
|
Real q1 = dlp(x, r);
|
|
Real q2 = -dlp(-x, r);
|
|
BOOST_CHECK_CLOSE_FRACTION(q1, q2, tol);
|
|
}
|
|
else
|
|
{
|
|
Real q1 = dlp(x, r);
|
|
Real q2 = dlp(-x, r);
|
|
BOOST_CHECK_CLOSE_FRACTION(q1, q2, tol);
|
|
}
|
|
|
|
Real l2_sq = 0;
|
|
for (int j = -(int)n; j <= (int) n; ++j)
|
|
{
|
|
Real y = Real(j)/Real(n);
|
|
Real term = dlp(y, r);
|
|
l2_sq += term*term;
|
|
}
|
|
l2_sq /= n;
|
|
Real l2_sq_expected = dlp.norm_sq(r);
|
|
BOOST_CHECK_CLOSE_FRACTION(l2_sq, l2_sq_expected, 20*tol);
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class Real>
|
|
void test_dlp_next()
|
|
{
|
|
std::cout << "Testing Discrete Legendre polynomial 'next' function on type " << typeid(Real).name() << "\n";
|
|
Real tol = std::numeric_limits<Real>::epsilon();
|
|
|
|
for(size_t n = 2; n < 20; ++n)
|
|
{
|
|
auto dlp = discrete_legendre<Real>(n);
|
|
for(Real x = -1; x <= 1; x += 0.1)
|
|
{
|
|
dlp.initialize_recursion(x);
|
|
for (size_t k = 2; k < n; ++k)
|
|
{
|
|
BOOST_CHECK_CLOSE(dlp.next(), dlp(x, k), tol);
|
|
}
|
|
|
|
dlp.initialize_recursion(x);
|
|
for (size_t k = 2; k < n; ++k)
|
|
{
|
|
BOOST_CHECK_CLOSE(dlp.next_prime(), dlp.prime(x, k), tol);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template<class Real>
|
|
void test_dlp_derivatives()
|
|
{
|
|
std::cout << "Testing Discrete Legendre polynomial derivatives on type " << typeid(Real).name() << "\n";
|
|
Real tol = 10*std::numeric_limits<Real>::epsilon();
|
|
int n = 25;
|
|
auto dlp = discrete_legendre<Real>(n);
|
|
Real x = 0.72;
|
|
Real q0p = dlp.prime(x, 0);
|
|
BOOST_TEST(q0p == 0);
|
|
Real q1p = dlp.prime(x, 1);
|
|
BOOST_TEST(q1p == 1);
|
|
Real q2p = dlp.prime(x, 2);
|
|
Real expected = 3*x;
|
|
BOOST_CHECK_CLOSE_FRACTION(q2p, expected, tol);
|
|
}
|
|
|
|
template<class Real>
|
|
void test_dlp_second_derivative()
|
|
{
|
|
std::cout << "Testing Discrete Legendre polynomial derivatives on type " << typeid(Real).name() << "\n";
|
|
int n = 25;
|
|
auto dlp = discrete_legendre<Real>(n);
|
|
Real x = Real(1)/Real(3);
|
|
dlp.initialize_recursion(x);
|
|
Real q2pp = dlp.next_dbl_prime();
|
|
BOOST_TEST(q2pp == 3);
|
|
}
|
|
|
|
|
|
template<class Real>
|
|
void test_interior_filter()
|
|
{
|
|
std::cout << "Testing interior filter on type " << typeid(Real).name() << "\n";
|
|
Real tol = std::numeric_limits<Real>::epsilon();
|
|
for(int n = 1; n < 10; ++n)
|
|
{
|
|
for (int p = 1; p < n; p += 2)
|
|
{
|
|
auto f = interior_filter<Real>(n,p);
|
|
// Since we only store half the filter coefficients,
|
|
// we need to reindex the moment sums:
|
|
Real sum = 0;
|
|
for (size_t j = 0; j < f.size(); ++j)
|
|
{
|
|
sum += j*f[j];
|
|
}
|
|
BOOST_CHECK_CLOSE_FRACTION(2*sum, 1, 1000*tol);
|
|
|
|
for (int l = 3; l <= p; l += 2)
|
|
{
|
|
sum = 0;
|
|
for (size_t j = 0; j < f.size(); ++j)
|
|
{
|
|
// The condition number of this sum is infinite!
|
|
// No need to get to worked up about the tolerance.
|
|
sum += pow(Real(j), l)*f[j];
|
|
}
|
|
BOOST_CHECK_SMALL(sum, sqrt(tol)/100);
|
|
}
|
|
//std::cout << "(n,p) = (" << n << "," << p << ") = {";
|
|
//for (auto & x : f)
|
|
//{
|
|
// std::cout << x << ", ";
|
|
//}
|
|
//std::cout << "}\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class Real>
|
|
void test_interior_lanczos()
|
|
{
|
|
std::cout << "Testing interior Lanczos on type " << typeid(Real).name() << "\n";
|
|
Real tol = std::numeric_limits<Real>::epsilon();
|
|
std::vector<Real> v(500);
|
|
std::fill(v.begin(), v.end(), 7);
|
|
|
|
for (size_t n = 1; n < 10; ++n)
|
|
{
|
|
for (size_t p = 2; p < 2*n; p += 2)
|
|
{
|
|
auto dld = discrete_lanczos_derivative(Real(0.1), n, p);
|
|
for (size_t m = n; m < v.size() - n; ++m)
|
|
{
|
|
Real dvdt = dld(v, m);
|
|
BOOST_CHECK_SMALL(dvdt, tol);
|
|
}
|
|
auto dvdt = dld(v);
|
|
for (size_t m = n; m < v.size() - n; ++m)
|
|
{
|
|
BOOST_CHECK_SMALL(dvdt[m], tol);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
for(size_t i = 0; i < v.size(); ++i)
|
|
{
|
|
v[i] = 7*i+8;
|
|
}
|
|
|
|
for (size_t n = 1; n < 10; ++n)
|
|
{
|
|
for (size_t p = 2; p < 2*n; p += 2)
|
|
{
|
|
auto dld = discrete_lanczos_derivative(Real(1), n, p);
|
|
for (size_t m = n; m < v.size() - n; ++m)
|
|
{
|
|
Real dvdt = dld(v, m);
|
|
BOOST_CHECK_CLOSE_FRACTION(dvdt, 7, 2000*tol);
|
|
}
|
|
auto dvdt = dld(v);
|
|
for (size_t m = n; m < v.size() - n; ++m)
|
|
{
|
|
BOOST_CHECK_CLOSE_FRACTION(dvdt[m], 7, 2000*tol);
|
|
}
|
|
}
|
|
}
|
|
|
|
//std::random_device rd{};
|
|
//auto seed = rd();
|
|
//std::cout << "Seed = " << seed << "\n";
|
|
std::mt19937 gen(4172378669);
|
|
std::normal_distribution<> dis{0, 0.01};
|
|
for (size_t i = 0; i < v.size(); ++i)
|
|
{
|
|
v[i] = 7*i+8 + dis(gen);
|
|
}
|
|
|
|
for (size_t n = 1; n < 10; ++n)
|
|
{
|
|
for (size_t p = 2; p < 2*n; p += 2)
|
|
{
|
|
auto dld = discrete_lanczos_derivative(Real(1), n, p);
|
|
for (size_t m = n; m < v.size() - n; ++m)
|
|
{
|
|
BOOST_CHECK_CLOSE_FRACTION(dld(v, m), Real(7), Real(0.0042));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
for (size_t i = 0; i < v.size(); ++i)
|
|
{
|
|
v[i] = 15*i*i + 7*i+8 + dis(gen);
|
|
}
|
|
|
|
for (size_t n = 1; n < 10; ++n)
|
|
{
|
|
for (size_t p = 2; p < 2*n; p += 2)
|
|
{
|
|
auto dld = discrete_lanczos_derivative(Real(1), n, p);
|
|
for (size_t m = n; m < v.size() - n; ++m)
|
|
{
|
|
BOOST_CHECK_CLOSE_FRACTION(dld(v,m), Real(30*m + 7), Real(0.00008));
|
|
}
|
|
}
|
|
}
|
|
|
|
std::normal_distribution<> dis1{0, 0.0001};
|
|
Real omega = Real(1)/Real(16);
|
|
for (size_t i = 0; i < v.size(); ++i)
|
|
{
|
|
v[i] = sin(i*omega) + dis1(gen);
|
|
}
|
|
|
|
for (size_t n = 10; n < 20; ++n)
|
|
{
|
|
for (size_t p = 3; p < 100 && p < n/2; p += 2)
|
|
{
|
|
auto dld = discrete_lanczos_derivative(Real(1), n, p);
|
|
|
|
for (size_t m = n; m < v.size() - n && m < n + 10; ++m)
|
|
{
|
|
BOOST_CHECK_CLOSE_FRACTION(dld(v,m), omega*cos(omega*m), Real(0.03));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class Real>
|
|
void test_boundary_filters()
|
|
{
|
|
std::cout << "Testing boundary filters on type " << typeid(Real).name() << "\n";
|
|
Real tol = std::numeric_limits<Real>::epsilon();
|
|
for(int n = 1; n < 5; ++n)
|
|
{
|
|
for (int p = 1; p < 2*n+1; ++p)
|
|
{
|
|
for (int s = -n; s <= n; ++s)
|
|
{
|
|
auto f = boundary_filter<Real>(n, p, s);
|
|
// Sum is zero:
|
|
Real sum = 0;
|
|
Real c = 0;
|
|
for (auto & x : f)
|
|
{
|
|
Real y = x - c;
|
|
Real t = sum + y;
|
|
c = (t-sum) -y;
|
|
sum = t;
|
|
}
|
|
BOOST_CHECK_SMALL(sum, 200*tol);
|
|
|
|
sum = 0;
|
|
c = 0;
|
|
for (size_t k = 0; k < f.size(); ++k)
|
|
{
|
|
Real j = Real(k) - Real(n);
|
|
// note the shifted index here:
|
|
Real x = (j-s)*f[k];
|
|
Real y = x - c;
|
|
Real t = sum + y;
|
|
c = (t-sum) -y;
|
|
sum = t;
|
|
}
|
|
BOOST_CHECK_CLOSE_FRACTION(sum, 1, 350*tol);
|
|
|
|
|
|
for (int l = 2; l <= p; ++l)
|
|
{
|
|
sum = 0;
|
|
c = 0;
|
|
for (size_t k = 0; k < f.size(); ++k)
|
|
{
|
|
Real j = Real(k) - Real(n);
|
|
// The condition number of this sum is infinite!
|
|
// No need to get to worked up about the tolerance.
|
|
Real x = pow(j-s, l)*f[k];
|
|
Real y = x - c;
|
|
Real t = sum + y;
|
|
c = (t-sum) -y;
|
|
sum = t;
|
|
}
|
|
BOOST_CHECK_SMALL(sum, sqrt(tol)/10);
|
|
}
|
|
|
|
//std::cout << "(n,p,s) = ("<< n << ", " << p << "," << s << ") = {";
|
|
//for (auto & x : f)
|
|
//{
|
|
// std::cout << x << ", ";
|
|
//}
|
|
//std::cout << "}\n";*/
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class Real>
|
|
void test_boundary_lanczos()
|
|
{
|
|
std::cout << "Testing Lanczos boundary on type " << typeid(Real).name() << "\n";
|
|
Real tol = std::numeric_limits<Real>::epsilon();
|
|
std::vector<Real> v(500, 7);
|
|
|
|
for (size_t n = 1; n < 10; ++n)
|
|
{
|
|
for (size_t p = 2; p < 2*n; ++p)
|
|
{
|
|
auto lsd = discrete_lanczos_derivative(Real(0.0125), n, p);
|
|
for (size_t m = 0; m < n; ++m)
|
|
{
|
|
Real dvdt = lsd(v,m);
|
|
BOOST_CHECK_SMALL(dvdt, 4*sqrt(tol));
|
|
}
|
|
for (size_t m = v.size() - n; m < v.size(); ++m)
|
|
{
|
|
Real dvdt = lsd(v,m);
|
|
BOOST_CHECK_SMALL(dvdt, 4*sqrt(tol));
|
|
}
|
|
}
|
|
}
|
|
|
|
for(size_t i = 0; i < v.size(); ++i)
|
|
{
|
|
v[i] = 7*i+8;
|
|
}
|
|
|
|
for (size_t n = 3; n < 10; ++n)
|
|
{
|
|
for (size_t p = 2; p < 2*n; ++p)
|
|
{
|
|
auto lsd = discrete_lanczos_derivative(Real(1), n, p);
|
|
for (size_t m = 0; m < n; ++m)
|
|
{
|
|
Real dvdt = lsd(v,m);
|
|
BOOST_CHECK_CLOSE_FRACTION(dvdt, 7, sqrt(tol));
|
|
}
|
|
|
|
for (size_t m = v.size() - n; m < v.size(); ++m)
|
|
{
|
|
Real dvdt = lsd(v,m);
|
|
BOOST_CHECK_CLOSE_FRACTION(dvdt, 7, 4*sqrt(tol));
|
|
}
|
|
}
|
|
}
|
|
|
|
for (size_t i = 0; i < v.size(); ++i)
|
|
{
|
|
v[i] = 15*i*i + 7*i+8;
|
|
}
|
|
|
|
for (size_t n = 1; n < 10; ++n)
|
|
{
|
|
for (size_t p = 2; p < 2*n; ++p)
|
|
{
|
|
auto lsd = discrete_lanczos_derivative(Real(1), n, p);
|
|
for (size_t m = 0; m < v.size(); ++m)
|
|
{
|
|
BOOST_CHECK_CLOSE_FRACTION(lsd(v,m), 30*m+7, 30*sqrt(tol));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Demonstrate that the boundary filters are also denoising:
|
|
//std::random_device rd{};
|
|
//auto seed = rd();
|
|
//std::cout << "seed = " << seed << "\n";
|
|
std::mt19937 gen(311354333);
|
|
std::normal_distribution<> dis{0, 0.01};
|
|
for (size_t i = 0; i < v.size(); ++i)
|
|
{
|
|
v[i] += dis(gen);
|
|
}
|
|
|
|
for (size_t n = 1; n < 10; ++n)
|
|
{
|
|
for (size_t p = 2; p < n; ++p)
|
|
{
|
|
auto lsd = discrete_lanczos_derivative(Real(1), n, p);
|
|
for (size_t m = 0; m < v.size(); ++m)
|
|
{
|
|
BOOST_CHECK_CLOSE_FRACTION(lsd(v,m), 30*m+7, 0.005);
|
|
}
|
|
auto dvdt = lsd(v);
|
|
for (size_t m = 0; m < v.size(); ++m)
|
|
{
|
|
BOOST_CHECK_CLOSE_FRACTION(dvdt[m], 30*m+7, 0.005);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class Real>
|
|
void test_acceleration_filters()
|
|
{
|
|
Real eps = std::numeric_limits<Real>::epsilon();
|
|
std::cout << std::setprecision(std::numeric_limits<double>::digits10);
|
|
std::cout << std::scientific;
|
|
for (size_t n = 1; n < 100; ++n)
|
|
{
|
|
for(size_t p = 3; p <= 2*n; ++p)
|
|
{
|
|
for(int64_t s = -int64_t(n); s <= 0 /*int64_t(n)*/; ++s)
|
|
{
|
|
auto v1 = boost::math::differentiation::detail::acceleration_boundary_filter<double>(n,p,s);
|
|
auto v2 = boost::math::differentiation::detail::acceleration_boundary_filter<long double>(n,p,s);
|
|
size_t dist1 = l1_ulp_error(v1, v2);
|
|
auto [dist2, worst_val1, worst_val2] = sup_ulp_error(v1, v2);
|
|
std::cout << "(n,p,s) = (" << n << ", " << p << ", " << s << ") = "
|
|
<< dist1 << ", sup = " << dist2 << ", worst = " << worst_val1 << ", actual = " << worst_val2 << "\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
/*Real eps = std::numeric_limits<Real>::epsilon();
|
|
for (size_t n = 1; n < 15; ++n)
|
|
{
|
|
for(size_t p = 3; p <= 2*n; ++p)
|
|
{
|
|
for(int64_t s = -int64_t(n); s <= 0; ++s)
|
|
{
|
|
auto f = boost::math::differentiation::detail::acceleration_boundary_filter<Real>(n,p,s);
|
|
if (std::is_same_v<Real, double>)
|
|
{
|
|
//std::cout << "We're using high precision!\n";
|
|
auto f1 = boost::math::differentiation::detail::acceleration_boundary_filter<cpp_bin_float_100>(n,p,s);
|
|
for (size_t i = 0; i < f1.size(); ++i)
|
|
{
|
|
f[i] = static_cast<Real>(f1[i]);
|
|
}
|
|
}
|
|
|
|
Real sum = 0;
|
|
Real c = 0;
|
|
for (auto & x : f)
|
|
{
|
|
Real y = x - c;
|
|
Real t = sum + y;
|
|
c = (t - sum) - y;
|
|
sum = t;
|
|
}
|
|
BOOST_CHECK_SMALL(abs(sum), 1000*eps);
|
|
|
|
sum = 0;
|
|
for (size_t k = 0; k < f.size(); ++k)
|
|
{
|
|
Real j = Real(k) - Real(n);
|
|
sum += (j-s)*f[k];
|
|
}
|
|
BOOST_CHECK_SMALL(sum, sqrt(eps));
|
|
|
|
sum = 0;
|
|
for (size_t k = 0; k < f.size(); ++k)
|
|
{
|
|
Real j = Real(k) - Real(n);
|
|
sum += (j-s)*(j-s)*f[k];
|
|
}
|
|
BOOST_CHECK_CLOSE_FRACTION(sum, 2, 4*sqrt(eps));
|
|
// See unlabelled equation in McDevitt, 2012, just after equation 26:
|
|
// It appears that there is an off-by-one error in that equation, since p + 1 moments don't vanish, only p.
|
|
for (size_t l = 3; l <= p; ++l)
|
|
{
|
|
sum = 0;
|
|
Real c = 0;
|
|
for (size_t k = 0; k < f.size(); ++k)
|
|
{
|
|
Real j = Real(k) - Real(n);
|
|
Real term = pow((j-s), l)*f[k];
|
|
Real y = term - c;
|
|
Real t = sum + y;
|
|
c = (t - sum) - y;
|
|
sum = t;
|
|
}
|
|
BOOST_CHECK_SMALL(abs(sum), 500*l*sqrt(eps));
|
|
}
|
|
}
|
|
}
|
|
}*/
|
|
}
|
|
|
|
template<class Real>
|
|
void test_lanczos_acceleration()
|
|
{
|
|
Real eps = std::numeric_limits<Real>::epsilon();
|
|
std::vector<Real> v(100, 7);
|
|
auto lanczos = discrete_lanczos_derivative<Real, 2>(Real(1), 4, 3);
|
|
for (size_t i = 0; i < v.size(); ++i)
|
|
{
|
|
BOOST_CHECK_SMALL(lanczos(v, i), eps);
|
|
}
|
|
|
|
for(size_t i = 0; i < v.size(); ++i)
|
|
{
|
|
v[i] = 7*i + 6;
|
|
}
|
|
for (size_t i = 0; i < v.size(); ++i)
|
|
{
|
|
BOOST_CHECK_SMALL(lanczos(v,i), 200*eps);
|
|
}
|
|
|
|
for(size_t i = 0; i < v.size(); ++i)
|
|
{
|
|
v[i] = 7*i*i + 9*i + 6;
|
|
}
|
|
for (size_t i = 0; i < v.size(); ++i)
|
|
{
|
|
BOOST_CHECK_CLOSE_FRACTION(lanczos(v, i), 14, 1000*eps);
|
|
}
|
|
|
|
v.resize(2048);
|
|
Real step = two_pi<Real>()/v.size();
|
|
for(size_t i = 0; i < v.size(); ++i)
|
|
{
|
|
Real x = i*step;
|
|
v[i] = sin(x);
|
|
}
|
|
|
|
std::random_device rd{};
|
|
auto seed = rd();
|
|
std::cout << "seed = " << seed << "\n";
|
|
std::mt19937 gen(seed);
|
|
std::normal_distribution<> dis{0, 0.00001};
|
|
for (size_t i = 0; i < v.size(); ++i)
|
|
{
|
|
v[i] += dis(gen);
|
|
}
|
|
|
|
|
|
size_t n = 100;
|
|
lanczos = discrete_lanczos_derivative<Real, 2>(step, n, 3);
|
|
auto w = lanczos(v);
|
|
BOOST_TEST(w.size() == v.size());
|
|
BOOST_CHECK_SMALL(w[0], 0.01);
|
|
for(size_t i = 1; i < n; ++i)
|
|
{
|
|
BOOST_CHECK_CLOSE_FRACTION(w[i], -v[i], 0.01);
|
|
}
|
|
|
|
for(size_t i = n; i < v.size() -n; ++i)
|
|
{
|
|
BOOST_CHECK_CLOSE_FRACTION(w[i], -v[i], 0.01);
|
|
}
|
|
|
|
/*for(size_t i = v.size() - n; i < v.size(); ++i)
|
|
{
|
|
BOOST_CHECK_CLOSE_FRACTION(w[i], -v[i], 0.01);
|
|
}*/
|
|
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(lanczos_smoothing_test)
|
|
{
|
|
|
|
//test_acceleration_filters<double>();
|
|
//test_acceleration_filters<cpp_bin_float_50>();
|
|
/*test_dlp_second_derivative<double>();
|
|
test_dlp_norms<double>();
|
|
test_dlp_evaluation<double>();
|
|
test_dlp_derivatives<double>();
|
|
test_dlp_next<double>();
|
|
test_dlp_norms<cpp_bin_float_50>();
|
|
test_boundary_filters<double>();
|
|
test_boundary_filters<long double>();
|
|
test_boundary_filters<cpp_bin_float_50>();
|
|
test_boundary_lanczos<double>();
|
|
test_boundary_lanczos<long double>();
|
|
// Takes too long!
|
|
//test_boundary_lanczos<cpp_bin_float_50>();
|
|
|
|
test_interior_filter<double>();
|
|
test_interior_filter<long double>();
|
|
test_interior_lanczos<double>();*/
|
|
|
|
test_lanczos_acceleration<double>();
|
|
}
|