mirror of
https://github.com/boostorg/math.git
synced 2026-01-26 06:42:12 +00:00
Added new optimisation config options (still need documenting). Tidied up use of instrumentation code so they all use BOOST_MATH_INSTRUMENT now. Various tweaks to inverse incomplete beta and gamma to reduce number of iterations. Changed incomplete gamma and beta to calculate derivative at the same time as the function (performance optimisation for inverses). Fixed MinGW failures. Refactored and extended rational / polynomial test cases. [SVN r4172]
600 lines
26 KiB
C++
600 lines
26 KiB
C++
// test_beta_dist.cpp
|
|
|
|
// Copyright John Maddock 2006.
|
|
// Copyright Paul A. Bristow 2006.
|
|
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt
|
|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
// Basic sanity tests for the beta Distribution.
|
|
|
|
// http://members.aol.com/iandjmsmith/BETAEX.HTM beta distribution calculator
|
|
// Appreas to be a 64-bit calculator showing 17 decimal digit (last is noisy).
|
|
// Similar to mathCAD?
|
|
|
|
|
|
// http://www.nuhertz.com/statmat/distributions.html#Beta
|
|
// Pretty graphs and explanations for most distributions.
|
|
|
|
// http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp
|
|
// provided 40 decimal digits accuracy incomplete beta aka beta regularized == cdf
|
|
|
|
// http://www.ausvet.com.au/pprev/content.php?page=PPscript
|
|
// mode 0.75 5/95% 0.9 alpha 7.39 beta 3.13
|
|
// http://www.epi.ucdavis.edu/diagnostictests/betabuster.html
|
|
// Beta Buster also calculates alpha and beta from mode & percentile estimates.
|
|
// This is NOT (yet) implemented.
|
|
|
|
#define BOOST_MATH_THROW_ON_DOMAIN_ERROR
|
|
|
|
#ifdef _MSC_VER
|
|
# pragma warning(disable: 4127) // conditional expression is constant.
|
|
# pragma warning(disable: 4100) // unreferenced formal parameter.
|
|
# pragma warning(disable: 4512) // assignment operator could not be generated.
|
|
#endif
|
|
|
|
#include <boost/math/distributions/beta.hpp> // for beta_distribution
|
|
using boost::math::beta_distribution;
|
|
using boost::math::beta;
|
|
|
|
#include <boost/math/concepts/real_concept.hpp> // for real_concept
|
|
using ::boost::math::concepts::real_concept;
|
|
|
|
#include <boost/test/included/test_exec_monitor.hpp> // for test_main
|
|
#include <boost/test/floating_point_comparison.hpp> // for BOOST_CHECK_CLOSE_FRACTION
|
|
|
|
#include <iostream>
|
|
using std::cout;
|
|
using std::endl;
|
|
#include <limits>
|
|
using std::numeric_limits;
|
|
|
|
template <class RealType>
|
|
void test_spot(
|
|
RealType a, // alpha a
|
|
RealType b, // beta b
|
|
RealType x, // Probability
|
|
RealType P, // CDF of beta(a, b)
|
|
RealType Q, // Complement of CDF
|
|
RealType tol) // Test tolerance.
|
|
{
|
|
boost::math::beta_distribution<RealType> abeta(a, b);
|
|
BOOST_CHECK_CLOSE_FRACTION(cdf(abeta, x), P, tol);
|
|
if((P < 0.99) && (Q < 0.99))
|
|
{ // We can only check this if P is not too close to 1,
|
|
// so that we can guarantee that Q is free of error,
|
|
// (and similarly for Q)
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
cdf(complement(abeta, x)), Q, tol);
|
|
if(x != 0)
|
|
{
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
quantile(abeta, P), x, tol);
|
|
}
|
|
else
|
|
{
|
|
// Just check quantile is very small:
|
|
if((std::numeric_limits<RealType>::max_exponent <= std::numeric_limits<double>::max_exponent)
|
|
&& (boost::is_floating_point<RealType>::value))
|
|
{
|
|
// Limit where this is checked: if exponent range is very large we may
|
|
// run out of iterations in our root finding algorithm.
|
|
BOOST_CHECK(quantile(abeta, P) < boost::math::tools::epsilon<RealType>() * 10);
|
|
}
|
|
} // if k
|
|
if(x != 0)
|
|
{
|
|
BOOST_CHECK_CLOSE_FRACTION(quantile(complement(abeta, Q)), x, tol);
|
|
}
|
|
else
|
|
{ // Just check quantile is very small:
|
|
if((std::numeric_limits<RealType>::max_exponent <= std::numeric_limits<double>::max_exponent) && (boost::is_floating_point<RealType>::value))
|
|
{ // Limit where this is checked: if exponent range is very large we may
|
|
// run out of iterations in our root finding algorithm.
|
|
BOOST_CHECK(quantile(complement(abeta, Q)) < boost::math::tools::epsilon<RealType>() * 10);
|
|
}
|
|
} // if x
|
|
// Estimate alpha & beta from mean and variance:
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
beta_distribution<RealType>::estimate_alpha(mean(abeta), variance(abeta)),
|
|
abeta.alpha(), tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
beta_distribution<RealType>::estimate_beta(mean(abeta), variance(abeta)),
|
|
abeta.beta(), tol);
|
|
|
|
// Estimate sample alpha and beta from others:
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
beta_distribution<RealType>::estimate_alpha(abeta.beta(), x, P),
|
|
abeta.alpha(), tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
beta_distribution<RealType>::estimate_beta(abeta.alpha(), x, P),
|
|
abeta.beta(), tol);
|
|
} // if((P < 0.99) && (Q < 0.99)
|
|
|
|
} // template <class RealType> void test_spot
|
|
|
|
template <class RealType> // Any floating-point type RealType.
|
|
void test_spots(RealType)
|
|
{
|
|
// Basic sanity checks with 'known good' values.
|
|
// MathCAD test data is to double precision only,
|
|
// so set tolerance to 100 eps expressed as a fraction, or
|
|
// 100 eps of type double expressed as a fraction,
|
|
// whichever is the larger.
|
|
|
|
RealType tolerance = (std::max)
|
|
(boost::math::tools::epsilon<RealType>(),
|
|
static_cast<RealType>(std::numeric_limits<double>::epsilon())); // 0 if real_concept.
|
|
|
|
cout << "Boost::math::tools::epsilon = " << boost::math::tools::epsilon<RealType>() <<endl;
|
|
cout << "std::numeric_limits::epsilon = " << std::numeric_limits<RealType>::epsilon() <<endl;
|
|
cout << "epsilon = " << tolerance;
|
|
|
|
tolerance *= 1000; // Note: NO * 100 because is fraction, NOT %.
|
|
cout << ", Tolerance = " << tolerance * 100 << "%." << endl;
|
|
|
|
// RealType teneps = boost::math::tools::epsilon<RealType>() * 10;
|
|
|
|
// Sources of spot test values:
|
|
|
|
// MathCAD defines dbeta(x, s1, s2) pdf, s1 == alpha, s2 = beta, x = x in Wolfram
|
|
// pbeta(x, s1, s2) cdf and qbeta(x, s1, s2) inverse of cdf
|
|
// returns pr(X ,= x) when random variable X
|
|
// has the beta distribution with parameters s1)alpha) and s2(beta).
|
|
// s1 > 0 and s2 >0 and 0 < x < 1 (but allows x == 0! and x == 1!)
|
|
// dbeta(0,1,1) = 0
|
|
// dbeta(0.5,1,1) = 1
|
|
|
|
using boost::math::beta_distribution;
|
|
using ::boost::math::cdf;
|
|
using ::boost::math::pdf;
|
|
|
|
// Tests that should throw:
|
|
BOOST_CHECK_THROW(mode(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1))), std::domain_error);
|
|
// mode is undefined, and throws domain_error!
|
|
|
|
// BOOST_CHECK_THROW(median(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1))), std::domain_error);
|
|
// median is undefined, and throws domain_error!
|
|
// But now median IS provided via derived accessor as quantile(half).
|
|
|
|
|
|
BOOST_CHECK_THROW( // For various bad arguments.
|
|
pdf(
|
|
beta_distribution<RealType>(static_cast<RealType>(-1), static_cast<RealType>(1)), // bad alpha < 0.
|
|
static_cast<RealType>(1)), std::domain_error);
|
|
|
|
BOOST_CHECK_THROW(
|
|
pdf(
|
|
beta_distribution<RealType>(static_cast<RealType>(0), static_cast<RealType>(1)), // bad alpha == 0.
|
|
static_cast<RealType>(1)), std::domain_error);
|
|
|
|
BOOST_CHECK_THROW(
|
|
pdf(
|
|
beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(0)), // bad beta == 0.
|
|
static_cast<RealType>(1)), std::domain_error);
|
|
|
|
BOOST_CHECK_THROW(
|
|
pdf(
|
|
beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(-1)), // bad beta < 0.
|
|
static_cast<RealType>(1)), std::domain_error);
|
|
|
|
BOOST_CHECK_THROW(
|
|
pdf(
|
|
beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)), // bad x < 0.
|
|
static_cast<RealType>(-1)), std::domain_error);
|
|
|
|
BOOST_CHECK_THROW(
|
|
pdf(
|
|
beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)), // bad x > 1.
|
|
static_cast<RealType>(999)), std::domain_error);
|
|
|
|
// Some exact pdf values.
|
|
|
|
BOOST_CHECK_EQUAL( // a = b = 1 is uniform distribution.
|
|
pdf(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)),
|
|
static_cast<RealType>(1)), // x
|
|
static_cast<RealType>(1));
|
|
BOOST_CHECK_EQUAL(
|
|
pdf(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)),
|
|
static_cast<RealType>(0)), // x
|
|
static_cast<RealType>(1));
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
pdf(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)),
|
|
static_cast<RealType>(0.5)), // x
|
|
static_cast<RealType>(1),
|
|
tolerance);
|
|
|
|
BOOST_CHECK_EQUAL(
|
|
beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)).alpha(),
|
|
static_cast<RealType>(1) ); //
|
|
|
|
BOOST_CHECK_EQUAL(
|
|
mean(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1))),
|
|
static_cast<RealType>(0.5) ); // Exact one half.
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
pdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)),
|
|
static_cast<RealType>(0.5)), // x
|
|
static_cast<RealType>(1.5), // Exactly 3/2
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
pdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)),
|
|
static_cast<RealType>(0.5)), // x
|
|
static_cast<RealType>(1.5), // Exactly 3/2
|
|
tolerance);
|
|
|
|
// CDF
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
cdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)),
|
|
static_cast<RealType>(0.1)), // x
|
|
static_cast<RealType>(0.02800000000000000000000000000000000000000L), // Seems exact.
|
|
// http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=BetaRegularized&ptype=0&z=0.1&a=2&b=2&digits=40
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
cdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)),
|
|
static_cast<RealType>(0.0001)), // x
|
|
static_cast<RealType>(2.999800000000000000000000000000000000000e-8L),
|
|
// http://members.aol.com/iandjmsmith/BETAEX.HTM 2.9998000000004
|
|
// http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=BetaRegularized&ptype=0&z=0.0001&a=2&b=2&digits=40
|
|
tolerance);
|
|
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
pdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)),
|
|
static_cast<RealType>(0.0001)), // x
|
|
static_cast<RealType>(0.0005999400000000004L), // http://members.aol.com/iandjmsmith/BETAEX.HTM
|
|
// Slightly higher tolerance for real concept:
|
|
(std::numeric_limits<RealType>::is_specialized ? 1 : 10) * tolerance);
|
|
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
cdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)),
|
|
static_cast<RealType>(0.9999)), // x
|
|
static_cast<RealType>(0.999999970002L), // http://members.aol.com/iandjmsmith/BETAEX.HTM
|
|
// Wolfram 0.9999999700020000000000000000000000000000
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
cdf(beta_distribution<RealType>(static_cast<RealType>(0.5), static_cast<RealType>(2)),
|
|
static_cast<RealType>(0.9)), // x
|
|
static_cast<RealType>(0.9961174629530394895796514664963063381217L),
|
|
// Wolfram
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
cdf(beta_distribution<RealType>(static_cast<RealType>(0.5), static_cast<RealType>(0.5)),
|
|
static_cast<RealType>(0.1)), // x
|
|
static_cast<RealType>(0.2048327646991334516491978475505189480977L),
|
|
// Wolfram
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
cdf(beta_distribution<RealType>(static_cast<RealType>(0.5), static_cast<RealType>(0.5)),
|
|
static_cast<RealType>(0.9)), // x
|
|
static_cast<RealType>(0.7951672353008665483508021524494810519023L),
|
|
// Wolfram
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
quantile(beta_distribution<RealType>(static_cast<RealType>(0.5), static_cast<RealType>(0.5)),
|
|
static_cast<RealType>(0.7951672353008665483508021524494810519023L)), // x
|
|
static_cast<RealType>(0.9),
|
|
// Wolfram
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
cdf(beta_distribution<RealType>(static_cast<RealType>(0.5), static_cast<RealType>(0.5)),
|
|
static_cast<RealType>(0.6)), // x
|
|
static_cast<RealType>(0.5640942168489749316118742861695149357858L),
|
|
// Wolfram
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
quantile(beta_distribution<RealType>(static_cast<RealType>(0.5), static_cast<RealType>(0.5)),
|
|
static_cast<RealType>(0.5640942168489749316118742861695149357858L)), // x
|
|
static_cast<RealType>(0.6),
|
|
// Wolfram
|
|
tolerance);
|
|
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
cdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.5)),
|
|
static_cast<RealType>(0.6)), // x
|
|
static_cast<RealType>(0.1778078083562213736802876784474931812329L),
|
|
// Wolfram
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
quantile(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.5)),
|
|
static_cast<RealType>(0.1778078083562213736802876784474931812329L)), // x
|
|
static_cast<RealType>(0.6),
|
|
// Wolfram
|
|
tolerance); // gives
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
cdf(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)),
|
|
static_cast<RealType>(0.1)), // x
|
|
static_cast<RealType>(0.1), // 0.1000000000000000000000000000000000000000
|
|
// Wolfram
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
quantile(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)),
|
|
static_cast<RealType>(0.1)), // x
|
|
static_cast<RealType>(0.1), // 0.1000000000000000000000000000000000000000
|
|
// Wolfram
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
cdf(complement(beta_distribution<RealType>(static_cast<RealType>(0.5), static_cast<RealType>(0.5)),
|
|
static_cast<RealType>(0.1))), // complement of x
|
|
static_cast<RealType>(0.7951672353008665483508021524494810519023L),
|
|
// Wolfram
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
quantile(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)),
|
|
static_cast<RealType>(0.0280000000000000000000000000000000000L)), // x
|
|
static_cast<RealType>(0.1),
|
|
// Wolfram
|
|
tolerance);
|
|
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
cdf(complement(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)),
|
|
static_cast<RealType>(0.1))), // x
|
|
static_cast<RealType>(0.9720000000000000000000000000000000000000L), // Exact.
|
|
// Wolfram
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(
|
|
pdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)),
|
|
static_cast<RealType>(0.9999)), // x
|
|
static_cast<RealType>(0.0005999399999999344L), // http://members.aol.com/iandjmsmith/BETAEX.HTM
|
|
tolerance*10); // Note less accurate.
|
|
|
|
//void test_spot(
|
|
// RealType a, // alpha a
|
|
// RealType b, // beta b
|
|
// RealType x, // Probability
|
|
// RealType P, // CDF of beta(a, b)
|
|
// RealType Q, // Complement of CDF
|
|
// RealType tol) // Test tolerance.
|
|
|
|
// These test quantiles and complements, and parameter estimates as well.
|
|
// Spot values using, for example:
|
|
// http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=BetaRegularized&ptype=0&z=0.1&a=0.5&b=3&digits=40
|
|
|
|
test_spot(
|
|
static_cast<RealType>(1), // alpha a
|
|
static_cast<RealType>(1), // beta b
|
|
static_cast<RealType>(0.1), // Probability p
|
|
static_cast<RealType>(0.1), // Probability of result (CDF of beta), P
|
|
static_cast<RealType>(0.9), // Complement of CDF Q = 1 - P
|
|
tolerance); // Test tolerance.
|
|
test_spot(
|
|
static_cast<RealType>(2), // alpha a
|
|
static_cast<RealType>(2), // beta b
|
|
static_cast<RealType>(0.1), // Probability p
|
|
static_cast<RealType>(0.0280000000000000000000000000000000000L), // Probability of result (CDF of beta), P
|
|
static_cast<RealType>(1 - 0.0280000000000000000000000000000000000L), // Complement of CDF Q = 1 - P
|
|
tolerance); // Test tolerance.
|
|
|
|
|
|
test_spot(
|
|
static_cast<RealType>(2), // alpha a
|
|
static_cast<RealType>(2), // beta b
|
|
static_cast<RealType>(0.5), // Probability p
|
|
static_cast<RealType>(0.5), // Probability of result (CDF of beta), P
|
|
static_cast<RealType>(0.5), // Complement of CDF Q = 1 - P
|
|
tolerance); // Test tolerance.
|
|
|
|
test_spot(
|
|
static_cast<RealType>(2), // alpha a
|
|
static_cast<RealType>(2), // beta b
|
|
static_cast<RealType>(0.9), // Probability p
|
|
static_cast<RealType>(0.972000000000000), // Probability of result (CDF of beta), P
|
|
static_cast<RealType>(1-0.972000000000000), // Complement of CDF Q = 1 - P
|
|
tolerance); // Test tolerance.
|
|
|
|
test_spot(
|
|
static_cast<RealType>(2), // alpha a
|
|
static_cast<RealType>(2), // beta b
|
|
static_cast<RealType>(0.01), // Probability p
|
|
static_cast<RealType>(0.0002980000000000000000000000000000000000000L), // Probability of result (CDF of beta), P
|
|
static_cast<RealType>(1-0.0002980000000000000000000000000000000000000L), // Complement of CDF Q = 1 - P
|
|
tolerance); // Test tolerance.
|
|
|
|
test_spot(
|
|
static_cast<RealType>(2), // alpha a
|
|
static_cast<RealType>(2), // beta b
|
|
static_cast<RealType>(0.001), // Probability p
|
|
static_cast<RealType>(2.998000000000000000000000000000000000000E-6L), // Probability of result (CDF of beta), P
|
|
static_cast<RealType>(1-2.998000000000000000000000000000000000000E-6L), // Complement of CDF Q = 1 - P
|
|
tolerance); // Test tolerance.
|
|
|
|
test_spot(
|
|
static_cast<RealType>(2), // alpha a
|
|
static_cast<RealType>(2), // beta b
|
|
static_cast<RealType>(0.0001), // Probability p
|
|
static_cast<RealType>(2.999800000000000000000000000000000000000E-8L), // Probability of result (CDF of beta), P
|
|
static_cast<RealType>(1-2.999800000000000000000000000000000000000E-8L), // Complement of CDF Q = 1 - P
|
|
tolerance); // Test tolerance.
|
|
|
|
test_spot(
|
|
static_cast<RealType>(2), // alpha a
|
|
static_cast<RealType>(2), // beta b
|
|
static_cast<RealType>(0.99), // Probability p
|
|
static_cast<RealType>(0.9997020000000000000000000000000000000000L), // Probability of result (CDF of beta), P
|
|
static_cast<RealType>(1-0.9997020000000000000000000000000000000000L), // Complement of CDF Q = 1 - P
|
|
tolerance); // Test tolerance.
|
|
|
|
test_spot(
|
|
static_cast<RealType>(0.5), // alpha a
|
|
static_cast<RealType>(2), // beta b
|
|
static_cast<RealType>(0.5), // Probability p
|
|
static_cast<RealType>(0.8838834764831844055010554526310612991060L), // Probability of result (CDF of beta), P
|
|
static_cast<RealType>(1-0.8838834764831844055010554526310612991060L), // Complement of CDF Q = 1 - P
|
|
tolerance); // Test tolerance.
|
|
|
|
test_spot(
|
|
static_cast<RealType>(0.5), // alpha a
|
|
static_cast<RealType>(3.), // beta b
|
|
static_cast<RealType>(0.7), // Probability p
|
|
static_cast<RealType>(0.9903963064097119299191611355232156905687L), // Probability of result (CDF of beta), P
|
|
static_cast<RealType>(1-0.9903963064097119299191611355232156905687L), // Complement of CDF Q = 1 - P
|
|
tolerance); // Test tolerance.
|
|
|
|
test_spot(
|
|
static_cast<RealType>(0.5), // alpha a
|
|
static_cast<RealType>(3.), // beta b
|
|
static_cast<RealType>(0.1), // Probability p
|
|
static_cast<RealType>(0.5545844446520295253493059553548880128511L), // Probability of result (CDF of beta), P
|
|
static_cast<RealType>(1-0.5545844446520295253493059553548880128511L), // Complement of CDF Q = 1 - P
|
|
tolerance); // Test tolerance.
|
|
|
|
} // template <class RealType>void test_spots(RealType)
|
|
|
|
int test_main(int, char* [])
|
|
{
|
|
#ifdef BOOST_MATH_THROW_ON_DOMAIN_ERROR
|
|
cout << "BOOST_MATH_THROW_ON_DOMAIN_ERROR" << " is defined to throw on domain error." << endl;
|
|
#else
|
|
cout << "BOOST_MATH_THROW_ON_DOMAIN_ERROR" << " is NOT defined, so NO throw on domain error." << endl;
|
|
#endif
|
|
// Check that can generate beta distribution using one convenience methods:
|
|
beta_distribution<> mybeta11(1., 1.); // Using default RealType double.
|
|
// but that
|
|
// boost::math::beta mybeta1(1., 1.); // Using typedef fails.
|
|
// error C2039: 'beta' : is not a member of 'boost::math'
|
|
|
|
// Basic sanity-check spot values.
|
|
|
|
// Some simple checks using double only.
|
|
BOOST_CHECK_EQUAL(mybeta11.alpha(), 1); //
|
|
BOOST_CHECK_EQUAL(mybeta11.beta(), 1);
|
|
BOOST_CHECK_EQUAL(mean(mybeta11), 0.5); // 1 / (1 + 1) = 1/2 exactly
|
|
BOOST_CHECK_THROW(mode(mybeta11), std::domain_error);
|
|
beta_distribution<> mybeta22(2., 2.); // pdf is dome shape.
|
|
BOOST_CHECK_EQUAL(mode(mybeta22), 0.5); // 2-1 / (2+2-2) = 1/2 exactly.
|
|
beta_distribution<> mybetaH2(0.5, 2.); //
|
|
beta_distribution<> mybetaH3(0.5, 3.); //
|
|
|
|
|
|
// Check a few values using double.
|
|
BOOST_CHECK_EQUAL(pdf(mybeta11, 1), 1); // is uniform unity over 0 to 1,
|
|
BOOST_CHECK_EQUAL(pdf(mybeta11, 0), 1); // including zero and unity.
|
|
// Although these next three have an exact result, internally they're
|
|
// *not* treated as special cases, and may be out by a couple of eps:
|
|
BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta11, 0.5), 1.0, 5*std::numeric_limits<double>::epsilon());
|
|
BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta11, 0.0001), 1.0, 5*std::numeric_limits<double>::epsilon());
|
|
BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta11, 0.9999), 1.0, 5*std::numeric_limits<double>::epsilon());
|
|
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta11, 0.1), 0.1, 2 * std::numeric_limits<double>::epsilon());
|
|
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta11, 0.5), 0.5, 2 * std::numeric_limits<double>::epsilon());
|
|
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta11, 0.9), 0.9, 2 * std::numeric_limits<double>::epsilon());
|
|
BOOST_CHECK_EQUAL(cdf(mybeta11, 1), 1.); // Exact unity expected.
|
|
|
|
double tol = std::numeric_limits<double>::epsilon() * 10;
|
|
BOOST_CHECK_EQUAL(pdf(mybeta22, 1), 0); // is dome shape.
|
|
BOOST_CHECK_EQUAL(pdf(mybeta22, 0), 0);
|
|
BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta22, 0.5), 1.5, tol); // top of dome, expect exactly 3/2.
|
|
BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta22, 0.0001), 5.9994000000000E-4, tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta22, 0.9999), 5.9994000000000E-4, tol*50);
|
|
|
|
BOOST_CHECK_EQUAL(cdf(mybeta22, 0.), 0); // cdf is a curved line from 0 to 1.
|
|
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.1), 0.028000000000000, tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.5), 0.5, tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.9), 0.972000000000000, tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.0001), 2.999800000000000000000000000000000000000E-8, tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.001), 2.998000000000000000000000000000000000000E-6, tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.01), 0.0002980000000000000000000000000000000000000, tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.1), 0.02800000000000000000000000000000000000000, tol); // exact
|
|
BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.99), 0.9997020000000000000000000000000000000000, tol);
|
|
|
|
BOOST_CHECK_EQUAL(cdf(mybeta22, 1), 1.); // Exact unity expected.
|
|
|
|
// Complement
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(cdf(complement(mybeta22, 0.9)), 0.028000000000000, tol);
|
|
|
|
// quantile.
|
|
BOOST_CHECK_CLOSE_FRACTION(quantile(mybeta22, 0.028), 0.1, tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(quantile(complement(mybeta22, 1 - 0.028)), 0.1, tol);
|
|
BOOST_CHECK_EQUAL(kurtosis(mybeta11), 3+ kurtosis_excess(mybeta11)); // Check kurtosis_excess = kurtosis - 3;
|
|
BOOST_CHECK_CLOSE_FRACTION(variance(mybeta22), 0.05, tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(mean(mybeta22), 0.5, tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(mode(mybeta22), 0.5, tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(median(mybeta22), 0.5, tol);
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(skewness(mybeta22), 0.0, tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(kurtosis_excess(mybeta22), -144.0 / 168, tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(skewness(beta_distribution<>(3, 5)), 0.30983866769659335081434123198259, tol);
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(beta_distribution<double>::estimate_alpha(mean(mybeta22), variance(mybeta22)), mybeta22.alpha(), tol); // mean, variance, probability.
|
|
BOOST_CHECK_CLOSE_FRACTION(beta_distribution<double>::estimate_beta(mean(mybeta22), variance(mybeta22)), mybeta22.beta(), tol);// mean, variance, probability.
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(mybeta22.estimate_alpha(mybeta22.beta(), 0.8, cdf(mybeta22, 0.8)), mybeta22.alpha(), tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(mybeta22.estimate_beta(mybeta22.alpha(), 0.8, cdf(mybeta22, 0.8)), mybeta22.beta(), tol);
|
|
|
|
|
|
beta_distribution<real_concept> rcbeta22(2, 2); // Using RealType real_concept.
|
|
cout << "numeric_limits<real_concept>::is_specialized " << numeric_limits<real_concept>::is_specialized << endl;
|
|
cout << "numeric_limits<real_concept>::digits " << numeric_limits<real_concept>::digits << endl;
|
|
cout << "numeric_limits<real_concept>::digits10 " << numeric_limits<real_concept>::digits10 << endl;
|
|
cout << "numeric_limits<real_concept>::epsilon " << numeric_limits<real_concept>::epsilon() << endl;
|
|
|
|
|
|
// (Parameter value, arbitrarily zero, only communicates the floating point type).
|
|
test_spots(0.0F); // Test float.
|
|
test_spots(0.0); // Test double.
|
|
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
|
|
test_spots(0.0L); // Test long double.
|
|
#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
|
|
test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
|
|
#endif
|
|
#endif
|
|
return 0;
|
|
} // int test_main(int, char* [])
|
|
|
|
/*
|
|
|
|
Output is:
|
|
|
|
------ Build started: Project: test_beta_dist, Configuration: Debug Win32 ------
|
|
Compiling...
|
|
test_beta_dist.cpp
|
|
Linking...
|
|
Autorun "i:\boost-06-05-03-1300\libs\math\test\Math_test\debug\test_beta_dist.exe"
|
|
Running 1 test case...
|
|
BOOST_MATH_THROW_ON_DOMAIN_ERROR is defined to throw on domain error.
|
|
numeric_limits<real_concept>::is_specialized 0
|
|
numeric_limits<real_concept>::digits 0
|
|
numeric_limits<real_concept>::digits10 0
|
|
numeric_limits<real_concept>::epsilon 0
|
|
Boost::math::tools::epsilon = 1.19209e-007
|
|
std::numeric_limits::epsilon = 1.19209e-007
|
|
epsilon = 1.19209e-007, Tolerance = 0.0119209%.
|
|
Boost::math::tools::epsilon = 2.22045e-016
|
|
std::numeric_limits::epsilon = 2.22045e-016
|
|
epsilon = 2.22045e-016, Tolerance = 2.22045e-011%.
|
|
Boost::math::tools::epsilon = 2.22045e-016
|
|
std::numeric_limits::epsilon = 2.22045e-016
|
|
epsilon = 2.22045e-016, Tolerance = 2.22045e-011%.
|
|
Boost::math::tools::epsilon = 2.22045e-016
|
|
std::numeric_limits::epsilon = 0
|
|
epsilon = 2.22045e-016, Tolerance = 2.22045e-011%.
|
|
*** No errors detected
|
|
Build Time 0:07
|
|
Build log was saved at "file://i:\boost-06-05-03-1300\libs\math\test\Math_test\test_beta_dist\Debug\BuildLog.htm"
|
|
test_beta_dist - 0 error(s), 0 warning(s)
|
|
========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========
|
|
|
|
|
|
*/
|
|
|