2
0
mirror of https://github.com/boostorg/math.git synced 2026-01-19 04:22:09 +00:00
Files
math/test/cubic_roots_test.cpp
2021-10-26 20:54:29 -07:00

133 lines
3.8 KiB
C++

/*
* Copyright Nick Thompson, 2021
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#include "math_unit_test.hpp"
#include <random>
#include <boost/math/tools/cubic_roots.hpp>
#ifdef BOOST_HAS_FLOAT128
#include <boost/multiprecision/float128.hpp>
using boost::multiprecision::float128;
#endif
using boost::math::tools::cubic_roots;
using boost::math::tools::cubic_root_residual;
using std::cbrt;
template<class Real>
void test_zero_coefficients()
{
Real a = 0;
Real b = 0;
Real c = 0;
Real d = 0;
auto roots = cubic_roots(a,b,c,d);
CHECK_EQUAL(roots[0], Real(0));
CHECK_EQUAL(roots[1], Real(0));
CHECK_EQUAL(roots[2], Real(0));
a = 1;
roots = cubic_roots(a,b,c,d);
CHECK_EQUAL(roots[0], Real(0));
CHECK_EQUAL(roots[1], Real(0));
CHECK_EQUAL(roots[2], Real(0));
a = 1;
d = 1;
// x^3 + 1 = 0:
roots = cubic_roots(a,b,c,d);
CHECK_EQUAL(roots[0], Real(-1));
CHECK_NAN(roots[1]);
CHECK_NAN(roots[2]);
d = -1;
// x^3 - 1 = 0:
roots = cubic_roots(a,b,c,d);
CHECK_EQUAL(roots[0], Real(1));
CHECK_NAN(roots[1]);
CHECK_NAN(roots[2]);
d = -2;
// x^3 - 2 = 0
roots = cubic_roots(a,b,c,d);
// Let's go for equality here!
CHECK_EQUAL(roots[0], cbrt(Real(2)));
CHECK_NAN(roots[1]);
CHECK_NAN(roots[2]);
d = -8;
roots = cubic_roots(a,b,c,d);
CHECK_EQUAL(roots[0], Real(2));
CHECK_NAN(roots[1]);
CHECK_NAN(roots[2]);
// (x-1)(x-2)(x-3) = x^3 - 6x^2 + 11x - 6
roots = cubic_roots(Real(1), Real(-6), Real(11), Real(-6));
CHECK_ULP_CLOSE(roots[0], Real(1), 2);
CHECK_ULP_CLOSE(roots[1], Real(2), 2);
CHECK_ULP_CLOSE(roots[2], Real(3), 2);
// Double root:
// (x+1)^2(x-2) = x^3 - 3x - 2:
// Note: This test is unstable wrt to perturbations!
roots = cubic_roots(Real(1), Real(0), Real(-3), Real(-2));
CHECK_ULP_CLOSE(-1, roots[0], 2);
CHECK_ULP_CLOSE(-1, roots[1], 2);
CHECK_ULP_CLOSE(2, roots[2], 2);
std::uniform_real_distribution<Real> dis(-2,2);
std::mt19937 gen(12345);
// Expected roots
std::array<Real, 3> r;
int trials = 10;
for (int i = 0; i < trials; ++i) {
// Mathematica:
// Expand[(x - r0)*(x - r1)*(x - r2)]
// - r0 r1 r2 + (r0 r1 + r0 r2 + r1 r2) x
// - (r0 + r1 + r2) x^2 + x^3
for (auto & root : r) {
root = static_cast<Real>(dis(gen));
}
std::sort(r.begin(), r.end());
Real a = 1;
Real b = -(r[0] + r[1] + r[2]);
Real c = r[0]*r[1] + r[0]*r[2] + r[1]*r[2];
Real d = -r[0]*r[1]*r[2];
auto roots = cubic_roots(a, b, c, d);
// I could check the condition number here, but this is fine right?
if(!CHECK_ULP_CLOSE(r[0], roots[0], 25)) {
std::cerr << " Polynomial x^3 + " << b << "x^2 + " << c << "x + " << d << " has roots {";
std::cerr << r[0] << ", " << r[1] << ", " << r[2] << "}, but the computed roots are {";
std::cerr << roots[0] << ", " << roots[1] << ", " << roots[2] << "}\n";
}
CHECK_ULP_CLOSE(r[1], roots[1], 25);
CHECK_ULP_CLOSE(r[2], roots[2], 25);
for (auto root : roots) {
auto res = cubic_root_residual(a, b,c,d, root);
CHECK_LE(abs(res[0]), 20*res[1]);
}
}
}
int main()
{
test_zero_coefficients<float>();
test_zero_coefficients<double>();
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_zero_coefficients<long double>();
#endif
#ifdef BOOST_HAS_FLOAT128
// For some reason, the quadmath is way less accurate than the float/double/long double:
//test_zero_coefficients<float128>();
#endif
return boost::math::test::report_errors();
}