mirror of
https://github.com/boostorg/math.git
synced 2026-02-13 12:32:15 +00:00
214 lines
20 KiB
HTML
214 lines
20 KiB
HTML
<html>
|
|
<head>
|
|
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
|
|
<title>Adaptive Trapezoidal Quadrature</title>
|
|
<link rel="stylesheet" href="../../math.css" type="text/css">
|
|
<meta name="generator" content="DocBook XSL Stylesheets V1.77.1">
|
|
<link rel="home" href="../../index.html" title="Math Toolkit 2.6.0">
|
|
<link rel="up" href="../quadrature.html" title="Quadrature">
|
|
<link rel="prev" href="../quadrature.html" title="Quadrature">
|
|
<link rel="next" href="../../internals.html" title="Chapter 13. Internal Details: Series, Rationals and Continued Fractions, Testing, and Development Tools">
|
|
</head>
|
|
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
|
|
<table cellpadding="2" width="100%"><tr>
|
|
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
|
|
<td align="center"><a href="../../../../../../index.html">Home</a></td>
|
|
<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
|
|
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
|
|
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
|
|
<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
|
|
</tr></table>
|
|
<hr>
|
|
<div class="spirit-nav">
|
|
<a accesskey="p" href="../quadrature.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quadrature.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../../internals.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
|
|
</div>
|
|
<div class="section">
|
|
<div class="titlepage"><div><div><h3 class="title">
|
|
<a name="math_toolkit.quadrature.trapezoidal"></a><a class="link" href="trapezoidal.html" title="Adaptive Trapezoidal Quadrature">Adaptive Trapezoidal
|
|
Quadrature</a>
|
|
</h3></div></div></div>
|
|
<h5>
|
|
<a name="math_toolkit.quadrature.trapezoidal.h0"></a>
|
|
<span class="phrase"><a name="math_toolkit.quadrature.trapezoidal.synopsis"></a></span><a class="link" href="trapezoidal.html#math_toolkit.quadrature.trapezoidal.synopsis">Synopsis</a>
|
|
</h5>
|
|
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">quadrature</span><span class="special">/</span><span class="identifier">trapezoidal</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
|
|
<span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">quadrature</span> <span class="special">{</span>
|
|
|
|
<span class="keyword">template</span><span class="special"><</span><span class="keyword">class</span> <span class="identifier">F</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Real</span><span class="special">></span>
|
|
<span class="identifier">Real</span> <span class="identifier">trapezoidal</span><span class="special">(</span><span class="identifier">F</span> <span class="identifier">f</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">b</span><span class="special">,</span>
|
|
<span class="identifier">Real</span> <span class="identifier">tol</span> <span class="special">=</span> <span class="identifier">sqrt</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="identifier">Real</span><span class="special">>::</span><span class="identifier">epsilon</span><span class="special">()),</span>
|
|
<span class="identifier">size_t</span> <span class="identifier">max_refinements</span> <span class="special">=</span> <span class="number">10</span><span class="special">,</span>
|
|
<span class="identifier">Real</span><span class="special">*</span> <span class="identifier">error_estimate</span> <span class="special">=</span> <span class="keyword">nullptr</span><span class="special">,</span>
|
|
<span class="identifier">Real</span><span class="special">*</span> <span class="identifier">L1</span> <span class="special">=</span> <span class="keyword">nullptr</span><span class="special">);</span>
|
|
|
|
<span class="keyword">template</span><span class="special"><</span><span class="keyword">class</span> <span class="identifier">F</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Real</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 15. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">></span>
|
|
<span class="identifier">Real</span> <span class="identifier">trapezoidal</span><span class="special">(</span><span class="identifier">F</span> <span class="identifier">f</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">b</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">tol</span><span class="special">,</span> <span class="identifier">size_t</span> <span class="identifier">max_refinements</span><span class="special">,</span>
|
|
<span class="identifier">Real</span><span class="special">*</span> <span class="identifier">error_estimate</span><span class="special">,</span> <span class="identifier">Real</span><span class="special">*</span> <span class="identifier">L1</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 15. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&</span> <span class="identifier">pol</span><span class="special">);</span>
|
|
|
|
<span class="special">}}}</span> <span class="comment">// namespaces</span>
|
|
</pre>
|
|
<h5>
|
|
<a name="math_toolkit.quadrature.trapezoidal.h1"></a>
|
|
<span class="phrase"><a name="math_toolkit.quadrature.trapezoidal.description"></a></span><a class="link" href="trapezoidal.html#math_toolkit.quadrature.trapezoidal.description">Description</a>
|
|
</h5>
|
|
<p>
|
|
The functional <code class="computeroutput"><span class="identifier">trapezoidal</span></code>
|
|
calculates the integral of a function <span class="emphasis"><em>f</em></span> using the surprisingly
|
|
simple trapezoidal rule. If we assume only that the integrand is twice continuously
|
|
differentiable, we can prove that the error of the composite trapezoidal
|
|
rule is 𝑶(h<sup>2</sup>). Hence halving the interval only cuts the error by about a fourth,
|
|
which in turn implies that we must evaluate the function many times before
|
|
an acceptable accuracy can be achieved.
|
|
</p>
|
|
<p>
|
|
However, the trapezoidal rule has an astonishing property: If the integrand
|
|
is periodic, and we integrate it over a period, then the trapezoidal rule
|
|
converges faster than any power of the step size <span class="emphasis"><em>h</em></span>.
|
|
This can be seen by examination of the <a href="https://en.wikipedia.org/wiki/Euler-Maclaurin_formula" target="_top">Euler-Maclaurin
|
|
summation formula</a>, which relates a definite integral to its trapezoidal
|
|
sum and error terms proportional to the derivatives of the function at the
|
|
endpoints. If the derivatives at the endpoints are the same or vanish, then
|
|
the error very nearly vanishes. Hence the trapezoidal rule is essentially
|
|
optimal for periodic integrands.
|
|
</p>
|
|
<p>
|
|
Other classes of integrands which are integrated efficiently by this method
|
|
are the C<sub>0</sub><sup>∞</sup>(∝) <a href="https://en.wikipedia.org/wiki/Bump_function" target="_top">bump
|
|
functions</a> and bell-shaped integrals over the infinite interval. For
|
|
details, see <a href="http://epubs.siam.org/doi/pdf/10.1137/130932132" target="_top">Trefethen's</a>
|
|
SIAM review.
|
|
</p>
|
|
<p>
|
|
In its simplest form, an integration can be performed by the following code
|
|
</p>
|
|
<pre class="programlisting"><span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">quadrature</span><span class="special">::</span><span class="identifier">trapezoidal</span><span class="special">;</span>
|
|
<span class="keyword">auto</span> <span class="identifier">f</span> <span class="special">=</span> <span class="special">[](</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">)</span> <span class="special">{</span> <span class="keyword">return</span> <span class="number">1</span><span class="special">/(</span><span class="number">5</span> <span class="special">-</span> <span class="number">4</span><span class="special">*</span><span class="identifier">cos</span><span class="special">(</span><span class="identifier">x</span><span class="special">));</span> <span class="special">};</span>
|
|
<span class="keyword">double</span> <span class="identifier">I</span> <span class="special">=</span> <span class="identifier">trapezoidal</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="number">0</span><span class="special">,</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">constants</span><span class="special">::</span><span class="identifier">two_pi</span><span class="special"><</span><span class="keyword">double</span><span class="special">>());</span>
|
|
</pre>
|
|
<p>
|
|
Since the routine is adaptive, step sizes are halved continuously until a
|
|
tolerance is reached. In order to control this tolerance, simply call the
|
|
routine with an additional argument
|
|
</p>
|
|
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">I</span> <span class="special">=</span> <span class="identifier">trapezoidal</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="number">0.0</span><span class="special">,</span> <span class="identifier">two_pi</span><span class="special"><</span><span class="keyword">double</span><span class="special">>(),</span> <span class="number">1e-6</span><span class="special">);</span>
|
|
</pre>
|
|
<p>
|
|
The routine stops when successive estimates of the integral <code class="computeroutput"><span class="identifier">I1</span></code> and <code class="computeroutput"><span class="identifier">I0</span></code>
|
|
differ by less than the tolerance multiplied by the estimated L<sub>1</sub> norm of the
|
|
function. A good choice for the tolerance is √ε, which is the default. If the
|
|
integrand is periodic, then the number of correct digits should double on
|
|
each interval halving. Hence, once the integration routine has estimated
|
|
that the error is √ε, then the actual error should be ~ε. If the integrand is
|
|
<span class="bold"><strong>not</strong></span> periodic, then reducing the error to
|
|
√ε takes much longer, but is nonetheless possible without becoming a major performance
|
|
bug.
|
|
</p>
|
|
<p>
|
|
A question arises as to what to do when successive estimates never pass below
|
|
the tolerance threshold. The stepsize would be halved until it eventually
|
|
would be flushed to zero, leading to an infinite loop. As such, you may pass
|
|
an optional argument <code class="computeroutput"><span class="identifier">max_refinements</span></code>
|
|
which controls how many times the interval may be halved before giving up.
|
|
By default, this maximum number of refinement steps is 10, which should never
|
|
be hit in double precision unless the function is not periodic. However,
|
|
for higher-precision types, it may be of interest to allow the algorithm
|
|
to compute more refinements:
|
|
</p>
|
|
<pre class="programlisting"><span class="identifier">size_t</span> <span class="identifier">max_refinements</span> <span class="special">=</span> <span class="number">15</span><span class="special">;</span>
|
|
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">I</span> <span class="special">=</span> <span class="identifier">trapezoidal</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="number">0</span><span class="special">,</span> <span class="identifier">two_pi</span><span class="special"><</span><span class="keyword">long</span> <span class="keyword">double</span><span class="special">>(),</span> <span class="number">1e-9L</span><span class="special">,</span> <span class="identifier">max_refinements</span><span class="special">);</span>
|
|
</pre>
|
|
<p>
|
|
Note that the maximum allowed compute time grows exponentially with <code class="computeroutput"><span class="identifier">max_refinements</span></code>. The routine will not throw
|
|
an exception if the maximum refinements is achieved without the requested
|
|
tolerance being attained. This is because the value calculated is more often
|
|
than not still usable. However, for applications with high-reliability requirements,
|
|
the error estimate should be queried. This is achieved by passing additional
|
|
pointers into the routine:
|
|
</p>
|
|
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">error_estimate</span><span class="special">;</span>
|
|
<span class="keyword">double</span> <span class="identifier">L1</span><span class="special">;</span>
|
|
<span class="keyword">double</span> <span class="identifier">I</span> <span class="special">=</span> <span class="identifier">adaptive_trapezoidal</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="number">0</span><span class="special">,</span> <span class="identifier">two_pi</span><span class="special"><</span><span class="keyword">double</span><span class="special">>(),</span> <span class="identifier">tolerance</span><span class="special">,</span> <span class="identifier">max_refinements</span><span class="special">,</span> <span class="special">&</span><span class="identifier">error_estimate</span><span class="special">,</span> <span class="special">&</span><span class="identifier">L1</span><span class="special">);</span>
|
|
<span class="keyword">if</span> <span class="special">(</span><span class="identifier">error_estimate</span> <span class="special">></span> <span class="identifier">tolerance</span><span class="special">*</span><span class="identifier">L1</span><span class="special">)</span>
|
|
<span class="special">{</span>
|
|
<span class="keyword">double</span> <span class="identifier">I</span> <span class="special">=</span> <span class="identifier">some_other_quadrature_method</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="number">0</span><span class="special">,</span> <span class="identifier">two_pi</span><span class="special"><</span><span class="keyword">double</span><span class="special">>());</span>
|
|
<span class="special">}</span>
|
|
</pre>
|
|
<p>
|
|
The final argument is the L<sub>1</sub> norm of the integral. This is computed along
|
|
with the integral, and is an essential component of the algorithm. First,
|
|
the L<sub>1</sub> norm establishes a scale against which the error can be measured. Second,
|
|
the L<sub>1</sub> norm can be used to evaluate the stability of the computation. This
|
|
can be formulated in a rigorous manner by defining the <span class="bold"><strong>condition
|
|
number of summation</strong></span>. The condition number of summation is defined
|
|
by
|
|
</p>
|
|
<p>
|
|
κ(S<sub>n</sub>) := Σ<sub>i</sub><sup>n</sup> |x<sub>i</sub>|/|Σ<sub>i</sub><sup>n</sup> x<sub>i</sub>|
|
|
</p>
|
|
<p>
|
|
If this number of ~10<sup>k</sup>, then <span class="emphasis"><em>k</em></span> additional digits are
|
|
expected to be lost in addition to digits lost due to floating point rounding
|
|
error. As all numerical quadrature methods reduce to summation, their stability
|
|
is controlled by the ratio ∫ |f| dt/|∫ f dt |, which is easily
|
|
seen to be equivalent to condition number of summation when evaluated numerically.
|
|
Hence both the error estimate and the condition number of summation should
|
|
be analyzed in applications requiring very high precision and reliability.
|
|
</p>
|
|
<p>
|
|
As an example, we consider evaluation of Bessel functions by trapezoidal
|
|
quadrature. The Bessel function of the first kind is defined via
|
|
</p>
|
|
<p>
|
|
J<sub>n</sub>(x) = 1/2Π ∫<sub>-Π</sub><sup>Π</sup> cos(n t - x sin(t)) dt
|
|
</p>
|
|
<p>
|
|
The integrand is periodic, so the Euler-Maclaurin summation formula guarantees
|
|
exponential convergence via the trapezoidal quadrature. Without careful consideration,
|
|
it seems this would be a very attractive method to compute Bessel functions.
|
|
However, we see that for large <span class="emphasis"><em>n</em></span> the integrand oscillates
|
|
rapidly, taking on positive and negative values, and hence the trapezoidal
|
|
sums become ill-conditioned. In double precision, <span class="emphasis"><em>x = 17</em></span>
|
|
and <span class="emphasis"><em>n = 25</em></span> gives a sum which is so poorly conditioned
|
|
that zero correct digits are obtained.
|
|
</p>
|
|
<p>
|
|
The final <a class="link" href="../../policy.html" title="Chapter 15. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
|
|
be used to control the behaviour of the function: how it handles errors,
|
|
what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter 15. Policies: Controlling Precision, Error Handling etc">policy
|
|
documentation for more details</a>.
|
|
</p>
|
|
<p>
|
|
References:
|
|
</p>
|
|
<p>
|
|
Trefethen, Lloyd N., Weideman, J.A.C., <span class="emphasis"><em>The Exponentially Convergent
|
|
Trapezoidal Rule</em></span>, SIAM Review, Vol. 56, No. 3, 2014.
|
|
</p>
|
|
<p>
|
|
Stoer, Josef, and Roland Bulirsch. <span class="emphasis"><em>Introduction to numerical analysis.
|
|
Vol. 12.</em></span>, Springer Science & Business Media, 2013.
|
|
</p>
|
|
<p>
|
|
Higham, Nicholas J. <span class="emphasis"><em>Accuracy and stability of numerical algorithms.</em></span>
|
|
Society for industrial and applied mathematics, 2002.
|
|
</p>
|
|
</div>
|
|
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
|
|
<td align="left"></td>
|
|
<td align="right"><div class="copyright-footer">Copyright © 2006-2010, 2012-2014, 2017 Nikhar
|
|
Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
|
|
Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Johan Råde, Gautam
|
|
Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle Walker
|
|
and Xiaogang Zhang<p>
|
|
Distributed under the Boost Software License, Version 1.0. (See accompanying
|
|
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
|
|
</p>
|
|
</div></td>
|
|
</tr></table>
|
|
<hr>
|
|
<div class="spirit-nav">
|
|
<a accesskey="p" href="../quadrature.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quadrature.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../../internals.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
|
|
</div>
|
|
</body>
|
|
</html>
|