2
0
mirror of https://github.com/boostorg/math.git synced 2026-01-19 04:22:09 +00:00
Files
math/test/generate_cpp_derivative_expr2.py
2025-08-16 12:53:10 +02:00

95 lines
3.1 KiB
Python

from sympy import symbols, simplify, ccode
from sympy.tensor.array import derive_by_array
import sys
import math
import sympy
def generate_cpp_tensor(expr, vars, order):
derivatives = expr
for _ in range(order):
derivatives = derive_by_array(derivatives, vars)
# Flatten tensor for variable assignment
def flatten(tensor):
if not hasattr(tensor, '__iter__') or isinstance(tensor, (str, bytes)):
return [tensor]
if hasattr(tensor, 'tolist'):
tensor = tensor.tolist()
flat_list = []
for e in tensor:
flat_list.extend(flatten(e))
return flat_list
flat_derivs = flatten(derivatives)
# Generate multi-indices for all tensor elements
def generate_indices(d, order):
if order == 0:
return [[]]
else:
smaller = generate_indices(d, order - 1)
return [s + [i] for s in smaller for i in range(d)]
all_indices = generate_indices(len(vars), order)
# Generate variable names like f_x, f_xy, f_xyz, etc.
var_names = []
for idx in all_indices:
suffix = ''.join(str(vars[i]) for i in idx)
var_names.append(f"f_{suffix}")
# Assign each derivative to a separate variable
code_lines = []
for var_name, expr in zip(var_names, flat_derivs):
simplified = simplify(expr)
c_expr = ccode(simplified)
code_lines.append(f" T {var_name} = static_cast<T>({c_expr});")
# Now build nested vector initialization recursively matching the shape of derivatives
def build_nested_vector(tensor, level=0, index_start=0):
if level == order:
# At the scalar level, return the variable name at flat index
return var_names[index_start], 1
else:
# tensor is iterable, build vector of sub-elements
if hasattr(tensor, 'tolist'):
tensor = tensor.tolist()
elems = []
count = 0
for t in tensor:
s, c = build_nested_vector(t, level+1, index_start + count)
elems.append(s)
count += c
return '{ ' + ', '.join(elems) + ' }', count
nested_vector_str, _ = build_nested_vector(derivatives)
# Compose return type string depending on order
def vector_type(level):
if level == 0:
return "T"
else:
return f"std::vector<{vector_type(level-1)}>"
return_type = vector_type(order)
# Compose final C++ function body with separate variable assignments and nested return vector
body = '\n'.join(code_lines) + f'\n return {nested_vector_str};'
return return_type, body
if __name__ == "__main__":
x, y, z = symbols('x y z')
vars = [x, y]
#f = sympy.log(1+sympy.sqrt(x**2))*sympy.exp(y) + sympy.Pow(x+y,2.5) - sympy.sqrt(1+x*y)
f = x/(y+x)*y/(x-y)
order = int(sys.argv[1]) if len(sys.argv) > 1 else 2
print(f"// Order-{order} derivative of f(x, y) = {f}")
ret_type, func_body = generate_cpp_tensor(f, vars, order)
print(f"template<typename T>")
print(f"{ret_type} gf_a(T x, T y) {{")
print(func_body)
print("}")