mirror of
https://github.com/boostorg/math.git
synced 2026-01-28 07:22:12 +00:00
92 lines
3.5 KiB
C++
92 lines
3.5 KiB
C++
// Copyright Nicholas Thompson 2017.
|
|
// Copyright Paul A. Bristow 2017.
|
|
// Copyright John Maddock 2017.
|
|
|
|
// Distributed under the Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt or
|
|
// copy at http://www.boost.org/LICENSE_1_0.txt).
|
|
|
|
#include <iostream>
|
|
#include <limits>
|
|
#include <vector>
|
|
#include <algorithm>
|
|
#include <iomanip>
|
|
#include <iterator>
|
|
#include <cmath>
|
|
#include <random>
|
|
#include <boost/random/uniform_real_distribution.hpp>
|
|
#include <boost/math/tools/roots.hpp>
|
|
|
|
//[cubic_b_spline_example
|
|
|
|
/*`This example demonstrates how to use the cubic b spline interpolator for regularly spaced data.
|
|
*/
|
|
#include <boost/math/interpolators/cubic_b_spline.hpp>
|
|
|
|
//] [/airy_zeros_example_1]
|
|
|
|
int main()
|
|
{
|
|
// We begin with an array of samples:
|
|
std::vector<double> v(500);
|
|
// And decide on a stepsize:
|
|
double step = 0.01;
|
|
|
|
// Initialize the vector with a function we'd like to interpolate:
|
|
for (size_t i = 0; i < v.size(); ++i)
|
|
{
|
|
v[i] = sin(i*step);
|
|
}
|
|
// We could define an arbitrary start time, but for now we'll just use 0:
|
|
boost::math::cubic_b_spline<double> spline(v.data(), v.size(), 0 /* start time */, step);
|
|
|
|
// Now we can evaluate the spline wherever we please.
|
|
std::mt19937 gen;
|
|
boost::random::uniform_real_distribution<double> absissa(0, v.size()*step);
|
|
for (size_t i = 0; i < 10; ++i)
|
|
{
|
|
double x = absissa(gen);
|
|
std::cout << "sin(" << x << ") = " << sin(x) << ", spline interpolation gives " << spline(x) << std::endl;
|
|
std::cout << "cos(" << x << ") = " << cos(x) << ", spline derivative interpolation gives " << spline.prime(x) << std::endl;
|
|
}
|
|
|
|
// The next example is less trivial:
|
|
// We will try to figure out when the population of the United States crossed 100 million.
|
|
// Since the census is taken every 10 years, the data is equally spaced, so we can use the cubic b spline.
|
|
// Data taken from https://en.wikipedia.org/wiki/United_States_Census
|
|
// An eye
|
|
// We'll start at the year 1860:
|
|
double t0 = 1860;
|
|
double time_step = 10;
|
|
std::vector<double> population{31443321, /* 1860 */
|
|
39818449, /* 1870 */
|
|
50189209, /* 1880 */
|
|
62947714, /* 1890 */
|
|
76212168, /* 1900 */
|
|
92228496, /* 1910 */
|
|
106021537, /* 1920 */
|
|
122775046, /* 1930 */
|
|
132164569, /* 1940 */
|
|
150697361, /* 1950 */
|
|
179323175};/* 1960 */
|
|
|
|
// An eyeball estimate indicates that the population crossed 100 million around 1915.
|
|
// Let's see what interpolation says:
|
|
boost::math::cubic_b_spline<double> p(population.data(), population.size(), t0, 10);
|
|
|
|
// Now create a function which has a zero at p = 100,000,000:
|
|
auto f = [=](double t){ return p(t) - 100000000; };
|
|
|
|
// Boost includes a bisection algorithm, which is robust, but not as fast as others (such as toms748)
|
|
// We'll use it because of it's simplicity:
|
|
|
|
boost::math::tools::eps_tolerance<double> tol;
|
|
auto result = boost::math::tools::bisect(f, 1910.0, 1920.0, tol);
|
|
auto time = result.first;
|
|
auto month = std::round((time - std::floor(time))*12 + 1);
|
|
auto year = std::floor(time);
|
|
std::cout << "The population of the United States surpassed 100 million on the ";
|
|
std::cout << month << "th month of " << year << std::endl;
|
|
|
|
}
|