2
0
mirror of https://github.com/boostorg/math.git synced 2026-01-26 18:52:10 +00:00
Files
math/test/test_igamma_inva.cpp

263 lines
9.9 KiB
C++

// (C) Copyright John Maddock 2006.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/math/concepts/real_concept.hpp>
#include <boost/math/special_functions/gamma.hpp>
#include <boost/test/included/test_exec_monitor.hpp>
#include <boost/test/floating_point_comparison.hpp>
#include <boost/math/tools/stats.hpp>
#include <boost/math/tools/test.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
#include <boost/lambda/lambda.hpp>
#include <boost/lambda/bind.hpp>
#include "handle_test_result.hpp"
//
// DESCRIPTION:
// ~~~~~~~~~~~~
//
// This file tests the incomplete gamma function inverses
// gamma_P_inva and gamma_Q_inva. There are two sets of tests:
// 2) TODO: Accuracy tests use values generated with NTL::RR at
// 1000-bit precision and our generic versions of these functions.
// 3) Round trip sanity checks, use the test data for the forward
// functions, and verify that we can get (approximately) back
// where we started.
//
// Note that when this file is first run on a new platform many of
// these tests will fail: the default accuracy is 1 epsilon which
// is too tight for most platforms. In this situation you will
// need to cast a human eye over the error rates reported and make
// a judgement as to whether they are acceptable. Either way please
// report the results to the Boost mailing list. Acceptable rates of
// error are marked up below as a series of regular expressions that
// identify the compiler/stdlib/platform/data-type/test-data/test-function
// along with the maximum expected peek and RMS mean errors for that
// test.
//
void expected_results()
{
//
// Define the max and mean errors expected for
// various compilers and platforms.
//
const char* largest_type;
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
if(boost::math::tools::digits<double>() == boost::math::tools::digits<long double>())
{
largest_type = "(long\\s+)?double";
}
else
{
largest_type = "long double";
}
#else
largest_type = "(long\\s+)?double";
#endif
//
// Linux:
//
add_expected_result(
"[^|]*", // compiler
"[^|]*", // stdlib
"linux", // platform
largest_type, // test type(s)
"[^|]*", // test data group
"[^|]*", 800, 200); // test function
//
// Catch all cases come last:
//
add_expected_result(
"[^|]*", // compiler
"[^|]*", // stdlib
"[^|]*", // platform
"real_concept", // test type(s)
"[^|]*", // test data group
"[^|]*", 2000, 1000); // test function
add_expected_result(
"[^|]*", // compiler
"[^|]*", // stdlib
"[^|]*", // platform
largest_type, // test type(s)
"[^|]*", // test data group
"[^|]*", 300, 100); // test function
// this one has to come last in case double *is* the widest
// float type:
add_expected_result(
"[^|]*", // compiler
"[^|]*", // stdlib
"[^|]*", // platform
"float|double", // test type(s)
"[^|]*", // test data group
"[^|]*", 10, 5); // test function
//
// Finish off by printing out the compiler/stdlib/platform names,
// we do this to make it easier to mark up expected error rates.
//
std::cout << "Tests run with " << BOOST_COMPILER << ", "
<< BOOST_STDLIB << ", " << BOOST_PLATFORM << std::endl;
}
template <class T>
void do_test_gamma_2(const T& data, const char* type_name, const char* test_name)
{
//
// test gamma_P_inva(T, T) against data:
//
using namespace std;
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
std::cout << test_name << " with type " << type_name << std::endl;
//
// These sanity checks test for a round trip accuracy of one half
// of the bits in T, unless T is type float, in which case we check
// for just one decimal digit. The problem here is the sensitivity
// of the functions, not their accuracy. This test data was generated
// for the forward functions, which means that when it is used as
// the input to the inverses then it is necessarily inexact. This rounding
// of the input is what makes the data unsuitable for use as an accuracy check,
// and also demonstrates that you can't in general round-trip these functions.
// It is however a useful sanity check.
//
value_type precision = static_cast<value_type>(ldexp(1.0, 1-boost::math::tools::digits<value_type>()/2)) * 100;
if(boost::math::tools::digits<value_type>() < 50)
precision = 1; // 1% or two decimal digits, all we can hope for when the input is truncated to float
for(unsigned i = 0; i < data.size(); ++i)
{
//
// These inverse tests are thrown off if the output of the
// incomplete gamma is too close to 1: basically there is insuffient
// information left in the value we're using as input to the inverse
// to be able to get back to the original value.
//
if(data[i][5] == 0)
BOOST_CHECK_EQUAL(boost::math::gamma_P_inva(data[i][1], data[i][5]), boost::math::tools::max_value<value_type>());
else if((1 - data[i][5] > 0.001) && (fabs(data[i][5]) >= boost::math::tools::min_value<value_type>()))
{
value_type inv = boost::math::gamma_P_inva(data[i][1], data[i][5]);
BOOST_CHECK_CLOSE(data[i][0], inv, precision);
}
else if(1 == data[i][5])
BOOST_CHECK_EQUAL(boost::math::gamma_P_inva(data[i][1], data[i][5]), boost::math::tools::min_value<value_type>());
else
{
// not enough bits in our input to get back to x, but we should be in
// the same ball park:
value_type inv = boost::math::gamma_P_inva(data[i][1], data[i][5]);
BOOST_CHECK_CLOSE(data[i][0], inv, 100);
}
if(data[i][3] == 0)
BOOST_CHECK_EQUAL(boost::math::gamma_Q_inva(data[i][1], data[i][3]), boost::math::tools::min_value<value_type>());
else if((1 - data[i][3] > 0.001) && (fabs(data[i][3]) >= boost::math::tools::min_value<value_type>()))
{
value_type inv = boost::math::gamma_Q_inva(data[i][1], data[i][3]);
BOOST_CHECK_CLOSE(data[i][0], inv, precision);
}
else if(1 == data[i][3])
BOOST_CHECK_EQUAL(boost::math::gamma_Q_inva(data[i][1], data[i][3]), boost::math::tools::max_value<value_type>());
else
{
// not enough bits in our input to get back to x, but we should be in
// the same ball park:
value_type inv = boost::math::gamma_Q_inva(data[i][1], data[i][3]);
BOOST_CHECK_CLOSE(data[i][0], inv, 100);
}
}
std::cout << std::endl;
}
template <class T>
void do_test_gamma_inva(const T& data, const char* type_name, const char* test_name)
{
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
typedef value_type (*pg)(value_type, value_type);
pg funcp = boost::math::gamma_P_inva;
using namespace boost::lambda;
boost::math::tools::test_result<value_type> result;
std::cout << "Testing " << test_name << " with type " << type_name
<< "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";
//
// test gamma_P_inva(T, T) against data:
//
result = boost::math::tools::test(
data,
bind(funcp, ret<value_type>(_1[0]), ret<value_type>(_1[1])),
ret<value_type>(_1[2]));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::gamma_P_inva", test_name);
//
// test gamma_Q_inva(T, T) against data:
//
funcp = boost::math::gamma_Q_inva;
result = boost::math::tools::test(
data,
bind(funcp, ret<value_type>(_1[0]), ret<value_type>(_1[1])),
ret<value_type>(_1[3]));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::gamma_Q_inva", test_name);
}
template <class T>
void test_gamma(T, const char* name)
{
//
// The actual test data is rather verbose, so it's in a separate file
//
// First the data for the incomplete gamma function, each
// row has the following 6 entries:
// Parameter a, parameter z,
// Expected tgamma(a, z), Expected gamma_Q(a, z)
// Expected tgamma_lower(a, z), Expected gamma_P(a, z)
//
# include "igamma_med_data.ipp"
do_test_gamma_2(igamma_med_data, name, "Running round trip sanity checks on incomplete gamma medium sized values");
# include "igamma_small_data.ipp"
do_test_gamma_2(igamma_small_data, name, "Running round trip sanity checks on incomplete gamma small values");
# include "igamma_big_data.ipp"
do_test_gamma_2(igamma_big_data, name, "Running round trip sanity checks on incomplete gamma large values");
# include "igamma_inva_data.ipp"
do_test_gamma_inva(igamma_inva_data, name, "Incomplete gamma inverses.");
}
int test_main(int, char* [])
{
expected_results();
test_gamma(0.1F, "float");
test_gamma(0.1, "double");
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_gamma(0.1L, "long double");
test_gamma(boost::math::concepts::real_concept(0.1), "real_concept");
#else
std::cout << "<note>The long double tests have been disabled on this platform "
"either because the long double overloads of the usual math functions are "
"not available at all, or because they are too inaccurate for these tests "
"to pass.</note>" << std::cout;
#endif
return 0;
}