2
0
mirror of https://github.com/boostorg/math.git synced 2026-01-25 06:22:09 +00:00
Files
math/minimax/f.cpp
John Maddock 5b95219e09 Fixed digamma 128-bit error rates with a more accurate value for the root.
Updated png's: hopefully they'll all render OK now.
Tweeked docs to reflect recent advances.


[SVN r3237]
2006-10-04 09:57:05 +00:00

191 lines
6.1 KiB
C++

// (C) Copyright John Maddock 2006.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#define L22
#include "../tools/ntl_rr_lanczos.hpp"
#include "../tools/ntl_rr_digamma.hpp"
#include <boost/math/tools/ntl.hpp>
#include <boost/math/tools/polynomial.hpp>
#include <boost/math/special_functions/log1p.hpp>
#include <boost/math/special_functions/expm1.hpp>
#include <boost/math/special_functions/gamma.hpp>
#include <boost/math/special_functions/erf.hpp>
#include <cmath>
NTL::RR f(const NTL::RR& x, int variant)
{
static const NTL::RR tiny = boost::math::tools::min_value<NTL::RR>() * 64;
switch(variant)
{
case 0:
return boost::math::expm1(x);
case 1:
return boost::math::log1p(x) - x;
case 2:
return boost::math::erf(x) / x - 1.125;
case 3:
{
NTL::RR y(x);
if(y == 0)
y += tiny;
return boost::math::lgamma(y+2) / y - 0.5;
}
case 4:
//
// lgamma in the range [2,3], use:
//
// lgamma(x) = (x-2) * (x + 1) * (c + R(x - 2))
//
// Works well at 80-bit long double precision, but doesn't
// stretch to 128-bit precision.
//
if(x == 0)
{
return boost::lexical_cast<NTL::RR>("0.42278433509846713939348790991759756895784066406008") / 3;
}
return boost::math::lgamma(x+2) / (x * (x+3));
case 5:
{
//
// lgamma in the range [1,2], use:
//
// lgamma(x) = (x - 1) * (x - 2) * (c + R(x - 1))
//
// works well over [1, 1.5] but not near 2 :-(
//
NTL::RR r1 = boost::lexical_cast<NTL::RR>("0.57721566490153286060651209008240243104215933593992");
NTL::RR r2 = boost::lexical_cast<NTL::RR>("0.42278433509846713939348790991759756895784066406008");
if(x == 0)
{
return r1;
}
if(x == 1)
{
return r2;
}
return boost::math::lgamma(x+1) / (x * (x - 1));
}
case 6:
{
//
// lgamma in the range [1.5,2], use:
//
// lgamma(x) = (2 - x) * (1 - x) * (c + R(2 - x))
//
// works well over [1.5, 2] but not near 1 :-(
//
NTL::RR r1 = boost::lexical_cast<NTL::RR>("0.57721566490153286060651209008240243104215933593992");
NTL::RR r2 = boost::lexical_cast<NTL::RR>("0.42278433509846713939348790991759756895784066406008");
if(x == 0)
{
return r2;
}
if(x == 1)
{
return r1;
}
return boost::math::lgamma(2-x) / (x * (x - 1));
}
case 7:
{
//
// erf_inv in range [0, 0.5]
//
NTL::RR y = x;
if(y == 0)
y = boost::math::tools::epsilon<NTL::RR>() / 64;
return boost::math::erf_inv(y) / (y * (y+10));
}
case 8:
{
//
// erfc_inv in range [0.25, 0.5]
// Use an y-offset of 0.25, and range [0, 0.25]
// abs error, auto y-offset.
//
NTL::RR y = x;
if(y == 0)
y = boost::lexical_cast<NTL::RR>("1e-5000");
return sqrt(-2 * log(y)) / boost::math::erfc_inv(y);
}
case 9:
{
NTL::RR x2 = x;
if(x2 == 0)
x2 = boost::lexical_cast<NTL::RR>("1e-5000");
NTL::RR y = exp(-x2*x2); // sqrt(-log(x2)) - 5;
return boost::math::erfc_inv(y) / x2;
}
case 10:
{
//
// Digamma over the interval [1,2], set x-offset to 1
// and optimise for absolute error over [0,1].
//
int current_precision = NTL::RR::precision();
if(current_precision < 1000)
NTL::RR::SetPrecision(1000);
//
// This value for the root of digamma is calculated using our
// differentiated lanczos approximation. It agrees with Cody
// to ~ 25 digits and to Morris to 35 digits. See:
// TOMS ALGORITHM 708 (Didonato and Morris).
// and Math. Comp. 27, 123-127 (1973) by Cody, Strecok and Thacher.
//
//NTL::RR root = boost::lexical_cast<NTL::RR>("1.4616321449683623412626595423257213234331845807102825466429633351908372838889871");
//
// Actually better to calculate the root on the fly, it appears to be more
// accurate: convergence is easier with the 1000-bit value, the approximation
// produced agrees with functions.mathworld.com values to 35 digits even quite
// near the root.
//
static boost::math::tools::eps_tolerance<NTL::RR> tol(1000);
static boost::uintmax_t max_iter = 1000;
static const NTL::RR root = boost::math::tools::bracket_and_solve_root(&boost::math::digamma, NTL::RR(1.4), NTL::RR(1.5), true, tol, max_iter).first;
NTL::RR x2 = x;
double lim = 1e-65;
if(fabs(x2 - root) < lim)
{
//
// This is a problem area:
// x2-root suffers cancellation error, so does digamma.
// That gets compounded again when Remez calculates the error
// function. This cludge seems to stop the worst of the problems:
//
static const NTL::RR a = boost::math::digamma(root - lim) / -lim;
static const NTL::RR b = boost::math::digamma(root + lim) / lim;
NTL::RR fract = (x2 - root + lim) / (2*lim);
NTL::RR r = (1-fract) * a + fract * b;
std::cout << "In root area: " << r;
return r;
}
NTL::RR result = boost::math::digamma(x2) / (x2 - root);
if(current_precision < 1000)
NTL::RR::SetPrecision(current_precision);
return result;
}
}
return 0;
}
void show_extra(
const boost::math::tools::polynomial<NTL::RR>& n,
const boost::math::tools::polynomial<NTL::RR>& d,
const NTL::RR& x_offset,
const NTL::RR& y_offset,
int variant)
{
switch(variant)
{
default:
// do nothing here...
;
}
}