mirror of
https://github.com/boostorg/math.git
synced 2026-01-25 06:22:09 +00:00
Updated png's: hopefully they'll all render OK now. Tweeked docs to reflect recent advances. [SVN r3237]
191 lines
6.1 KiB
C++
191 lines
6.1 KiB
C++
// (C) Copyright John Maddock 2006.
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0. (See accompanying file
|
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#define L22
|
|
#include "../tools/ntl_rr_lanczos.hpp"
|
|
#include "../tools/ntl_rr_digamma.hpp"
|
|
#include <boost/math/tools/ntl.hpp>
|
|
#include <boost/math/tools/polynomial.hpp>
|
|
#include <boost/math/special_functions/log1p.hpp>
|
|
#include <boost/math/special_functions/expm1.hpp>
|
|
#include <boost/math/special_functions/gamma.hpp>
|
|
#include <boost/math/special_functions/erf.hpp>
|
|
|
|
#include <cmath>
|
|
|
|
|
|
NTL::RR f(const NTL::RR& x, int variant)
|
|
{
|
|
static const NTL::RR tiny = boost::math::tools::min_value<NTL::RR>() * 64;
|
|
switch(variant)
|
|
{
|
|
case 0:
|
|
return boost::math::expm1(x);
|
|
case 1:
|
|
return boost::math::log1p(x) - x;
|
|
case 2:
|
|
return boost::math::erf(x) / x - 1.125;
|
|
case 3:
|
|
{
|
|
NTL::RR y(x);
|
|
if(y == 0)
|
|
y += tiny;
|
|
return boost::math::lgamma(y+2) / y - 0.5;
|
|
}
|
|
case 4:
|
|
//
|
|
// lgamma in the range [2,3], use:
|
|
//
|
|
// lgamma(x) = (x-2) * (x + 1) * (c + R(x - 2))
|
|
//
|
|
// Works well at 80-bit long double precision, but doesn't
|
|
// stretch to 128-bit precision.
|
|
//
|
|
if(x == 0)
|
|
{
|
|
return boost::lexical_cast<NTL::RR>("0.42278433509846713939348790991759756895784066406008") / 3;
|
|
}
|
|
return boost::math::lgamma(x+2) / (x * (x+3));
|
|
case 5:
|
|
{
|
|
//
|
|
// lgamma in the range [1,2], use:
|
|
//
|
|
// lgamma(x) = (x - 1) * (x - 2) * (c + R(x - 1))
|
|
//
|
|
// works well over [1, 1.5] but not near 2 :-(
|
|
//
|
|
NTL::RR r1 = boost::lexical_cast<NTL::RR>("0.57721566490153286060651209008240243104215933593992");
|
|
NTL::RR r2 = boost::lexical_cast<NTL::RR>("0.42278433509846713939348790991759756895784066406008");
|
|
if(x == 0)
|
|
{
|
|
return r1;
|
|
}
|
|
if(x == 1)
|
|
{
|
|
return r2;
|
|
}
|
|
return boost::math::lgamma(x+1) / (x * (x - 1));
|
|
}
|
|
case 6:
|
|
{
|
|
//
|
|
// lgamma in the range [1.5,2], use:
|
|
//
|
|
// lgamma(x) = (2 - x) * (1 - x) * (c + R(2 - x))
|
|
//
|
|
// works well over [1.5, 2] but not near 1 :-(
|
|
//
|
|
NTL::RR r1 = boost::lexical_cast<NTL::RR>("0.57721566490153286060651209008240243104215933593992");
|
|
NTL::RR r2 = boost::lexical_cast<NTL::RR>("0.42278433509846713939348790991759756895784066406008");
|
|
if(x == 0)
|
|
{
|
|
return r2;
|
|
}
|
|
if(x == 1)
|
|
{
|
|
return r1;
|
|
}
|
|
return boost::math::lgamma(2-x) / (x * (x - 1));
|
|
}
|
|
case 7:
|
|
{
|
|
//
|
|
// erf_inv in range [0, 0.5]
|
|
//
|
|
NTL::RR y = x;
|
|
if(y == 0)
|
|
y = boost::math::tools::epsilon<NTL::RR>() / 64;
|
|
return boost::math::erf_inv(y) / (y * (y+10));
|
|
}
|
|
case 8:
|
|
{
|
|
//
|
|
// erfc_inv in range [0.25, 0.5]
|
|
// Use an y-offset of 0.25, and range [0, 0.25]
|
|
// abs error, auto y-offset.
|
|
//
|
|
NTL::RR y = x;
|
|
if(y == 0)
|
|
y = boost::lexical_cast<NTL::RR>("1e-5000");
|
|
return sqrt(-2 * log(y)) / boost::math::erfc_inv(y);
|
|
}
|
|
case 9:
|
|
{
|
|
NTL::RR x2 = x;
|
|
if(x2 == 0)
|
|
x2 = boost::lexical_cast<NTL::RR>("1e-5000");
|
|
NTL::RR y = exp(-x2*x2); // sqrt(-log(x2)) - 5;
|
|
return boost::math::erfc_inv(y) / x2;
|
|
}
|
|
case 10:
|
|
{
|
|
//
|
|
// Digamma over the interval [1,2], set x-offset to 1
|
|
// and optimise for absolute error over [0,1].
|
|
//
|
|
int current_precision = NTL::RR::precision();
|
|
if(current_precision < 1000)
|
|
NTL::RR::SetPrecision(1000);
|
|
//
|
|
// This value for the root of digamma is calculated using our
|
|
// differentiated lanczos approximation. It agrees with Cody
|
|
// to ~ 25 digits and to Morris to 35 digits. See:
|
|
// TOMS ALGORITHM 708 (Didonato and Morris).
|
|
// and Math. Comp. 27, 123-127 (1973) by Cody, Strecok and Thacher.
|
|
//
|
|
//NTL::RR root = boost::lexical_cast<NTL::RR>("1.4616321449683623412626595423257213234331845807102825466429633351908372838889871");
|
|
//
|
|
// Actually better to calculate the root on the fly, it appears to be more
|
|
// accurate: convergence is easier with the 1000-bit value, the approximation
|
|
// produced agrees with functions.mathworld.com values to 35 digits even quite
|
|
// near the root.
|
|
//
|
|
static boost::math::tools::eps_tolerance<NTL::RR> tol(1000);
|
|
static boost::uintmax_t max_iter = 1000;
|
|
static const NTL::RR root = boost::math::tools::bracket_and_solve_root(&boost::math::digamma, NTL::RR(1.4), NTL::RR(1.5), true, tol, max_iter).first;
|
|
|
|
NTL::RR x2 = x;
|
|
double lim = 1e-65;
|
|
if(fabs(x2 - root) < lim)
|
|
{
|
|
//
|
|
// This is a problem area:
|
|
// x2-root suffers cancellation error, so does digamma.
|
|
// That gets compounded again when Remez calculates the error
|
|
// function. This cludge seems to stop the worst of the problems:
|
|
//
|
|
static const NTL::RR a = boost::math::digamma(root - lim) / -lim;
|
|
static const NTL::RR b = boost::math::digamma(root + lim) / lim;
|
|
NTL::RR fract = (x2 - root + lim) / (2*lim);
|
|
NTL::RR r = (1-fract) * a + fract * b;
|
|
std::cout << "In root area: " << r;
|
|
return r;
|
|
}
|
|
NTL::RR result = boost::math::digamma(x2) / (x2 - root);
|
|
if(current_precision < 1000)
|
|
NTL::RR::SetPrecision(current_precision);
|
|
return result;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void show_extra(
|
|
const boost::math::tools::polynomial<NTL::RR>& n,
|
|
const boost::math::tools::polynomial<NTL::RR>& d,
|
|
const NTL::RR& x_offset,
|
|
const NTL::RR& y_offset,
|
|
int variant)
|
|
{
|
|
switch(variant)
|
|
{
|
|
default:
|
|
// do nothing here...
|
|
;
|
|
}
|
|
}
|
|
|