2
0
mirror of https://github.com/boostorg/math.git synced 2026-01-19 04:22:09 +00:00
Files
math/minimax/main.cpp
John Maddock 772c8ae7ca Initial math-toolkit commit.
Includes all code and tests, but no docs yet.

[SVN r39792]
2007-10-08 16:58:15 +00:00

521 lines
16 KiB
C++

// (C) Copyright John Maddock 2006.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#define BOOST_UBLAS_TYPE_CHECK_EPSILON (type_traits<real_type>::type_sqrt (boost::math::tools::epsilon <real_type>()))
#define BOOST_UBLAS_TYPE_CHECK_MIN (type_traits<real_type>::type_sqrt ( boost::math::tools::min_value<real_type>()))
#include <boost/math/bindings/rr.hpp>
#include <boost/math/tools/remez.hpp>
#include <boost/math/tools/test.hpp>
#include <boost/spirit/core.hpp>
#include <boost/spirit/actor.hpp>
#include <boost/lexical_cast.hpp>
#include <iostream>
#include <iomanip>
#include <string>
#include <boost/test/included/test_exec_monitor.hpp> // for test_main
extern boost::math::ntl::RR f(const boost::math::ntl::RR& x, int variant);
extern void show_extra(
const boost::math::tools::polynomial<boost::math::ntl::RR>& n,
const boost::math::tools::polynomial<boost::math::ntl::RR>& d,
const boost::math::ntl::RR& x_offset,
const boost::math::ntl::RR& y_offset,
int variant);
using namespace boost::spirit;
boost::math::ntl::RR a(0), b(1); // range to optimise over
bool rel_error(true);
bool pin(false);
int orderN(3);
int orderD(1);
int target_precision(53);
int working_precision(250);
bool started(false);
int variant(0);
int skew(0);
int brake(50);
boost::math::ntl::RR x_offset(0), y_offset(0);
bool auto_offset_y;
boost::shared_ptr<boost::math::tools::remez_minimax<boost::math::ntl::RR> > p_remez;
boost::math::ntl::RR the_function(const boost::math::ntl::RR& val)
{
return f(val + x_offset, variant) + y_offset;
}
void step_some(unsigned count)
{
try{
NTL::RR::SetPrecision(working_precision);
if(!started)
{
//
// If we have an automatic y-offset calculate it now:
//
if(auto_offset_y)
{
boost::math::ntl::RR fa, fb, fm;
fa = f(a + x_offset, variant);
fb = f(b + x_offset, variant);
fm = f((a+b)/2 + x_offset, variant);
y_offset = -(fa + fb + fm) / 3;
NTL::RR::SetOutputPrecision(5);
std::cout << "Setting auto-y-offset to " << y_offset << std::endl;
}
//
// Truncate offsets to float precision:
//
x_offset = NTL::RoundToPrecision(x_offset.value(), 20);
y_offset = NTL::RoundToPrecision(y_offset.value(), 20);
//
// Construct new Remez state machine:
//
p_remez.reset(new boost::math::tools::remez_minimax<boost::math::ntl::RR>(
&the_function,
orderN, orderD,
a, b,
pin,
rel_error,
skew,
working_precision));
std::cout << "Max error in interpolated form: " << std::setprecision(3) << std::scientific << boost::math::tools::real_cast<double>(p_remez->max_error()) << std::endl;
//
// Signal that we've started:
//
started = true;
}
unsigned i;
for(i = 0; i < count; ++i)
{
std::cout << "Stepping..." << std::endl;
p_remez->set_brake(brake);
boost::math::ntl::RR r = p_remez->iterate();
NTL::RR::SetOutputPrecision(3);
std::cout
<< "Maximum Deviation Found: " << std::setprecision(3) << std::scientific << boost::math::tools::real_cast<double>(p_remez->max_error()) << std::endl
<< "Expected Error Term: " << std::setprecision(3) << std::scientific << boost::math::tools::real_cast<double>(p_remez->error_term()) << std::endl
<< "Maximum Relative Change in Control Points: " << std::setprecision(3) << std::scientific << boost::math::tools::real_cast<double>(r) << std::endl;
}
}
catch(const std::exception& e)
{
std::cout << "Step failed with exception: " << e.what() << std::endl;
}
}
void step(const char*, const char*)
{
step_some(1);
}
void show(const char*, const char*)
{
NTL::RR::SetPrecision(working_precision);
if(started)
{
boost::math::tools::polynomial<boost::math::ntl::RR> n = p_remez->numerator();
boost::math::tools::polynomial<boost::math::ntl::RR> d = p_remez->denominator();
int prec = 2 + (target_precision * 3010LL)/10000;
std::cout << std::scientific << std::setprecision(prec);
NTL::RR::SetOutputPrecision(prec);
boost::numeric::ublas::vector<boost::math::ntl::RR> v = p_remez->zero_points();
std::cout << " Zeros = {\n";
unsigned i;
for(i = 0; i < v.size(); ++i)
{
std::cout << " " << v[i] << std::endl;
}
std::cout << " }\n";
v = p_remez->chebyshev_points();
std::cout << " Chebeshev Control Points = {\n";
for(i = 0; i < v.size(); ++i)
{
std::cout << " " << v[i] << std::endl;
}
std::cout << " }\n";
std::cout << "X offset: " << x_offset << std::endl;
std::cout << "Y offset: " << y_offset << std::endl;
std::cout << "P = {";
for(i = 0; i < n.size(); ++i)
{
std::cout << " " << n[i] << std::endl;
}
std::cout << " }\n";
std::cout << "Q = {";
for(i = 0; i < d.size(); ++i)
{
std::cout << " " << d[i] << std::endl;
}
std::cout << " }\n";
show_extra(n, d, x_offset, y_offset, variant);
}
else
{
std::cerr << "Nothing to display" << std::endl;
}
}
void do_graph(unsigned points)
{
NTL::RR::SetPrecision(working_precision);
boost::math::ntl::RR step = (b - a) / (points - 1);
boost::math::ntl::RR x = a;
while(points > 1)
{
NTL::RR::SetOutputPrecision(10);
std::cout << std::setprecision(10) << std::setw(30) << std::left
<< boost::lexical_cast<std::string>(x) << the_function(x) << std::endl;
--points;
x += step;
}
std::cout << std::setprecision(10) << std::setw(30) << std::left
<< boost::lexical_cast<std::string>(b) << the_function(b) << std::endl;
}
void graph(const char*, const char*)
{
do_graph(3);
}
template <class T>
void do_test(T, const char* name)
{
boost::math::ntl::RR::SetPrecision(working_precision);
if(started)
{
//
// We want to test the approximation at fixed precision:
// either float, double or long double. Begin by getting the
// polynomials:
//
boost::math::tools::polynomial<T> n, d;
n = p_remez->numerator();
d = p_remez->denominator();
//
// We'll test at the Chebeshev control points which is where
// (in theory) the largest deviation should occur. For good
// measure we'll test at the zeros as well:
//
boost::numeric::ublas::vector<boost::math::ntl::RR>
zeros(p_remez->zero_points()),
cheb(p_remez->chebyshev_points());
boost::math::ntl::RR max_error(0);
//
// Do the tests at the zeros:
//
std::cout << "Starting tests at " << name << " precision...\n";
std::cout << "Absissa Error\n";
unsigned i;
for(i = 0; i < zeros.size(); ++i)
{
boost::math::ntl::RR true_result = the_function(zeros[i]);
T absissa = boost::math::tools::real_cast<T>(zeros[i]);
boost::math::ntl::RR test_result = n.evaluate(absissa) / d.evaluate(absissa);
boost::math::ntl::RR err;
if(rel_error)
{
err = boost::math::tools::relative_error(test_result, true_result);
}
else
{
err = fabs(test_result - true_result);
}
if(err > max_error)
max_error = err;
std::cout << std::setprecision(6) << std::setw(15) << std::left << absissa
<< boost::math::tools::real_cast<T>(err) << std::endl;
}
//
// Do the tests at the Chebeshev control points:
//
for(i = 0; i < cheb.size(); ++i)
{
boost::math::ntl::RR true_result = the_function(cheb[i]);
T absissa = boost::math::tools::real_cast<T>(cheb[i]);
boost::math::ntl::RR test_result = n.evaluate(absissa) / d.evaluate(absissa);
boost::math::ntl::RR err;
if(rel_error)
{
err = boost::math::tools::relative_error(test_result, true_result);
}
else
{
err = fabs(test_result - true_result);
}
if(err > max_error)
max_error = err;
std::cout << std::setprecision(6) << std::setw(15) << std::left << absissa
<< boost::math::tools::real_cast<T>(err) << std::endl;
}
std::cout << "Max error found: " << std::setprecision(6) << boost::math::tools::real_cast<T>(max_error) << std::endl;
}
else
{
std::cout << "Nothing to test: try converging an approximation first!!!" << std::endl;
}
}
void test_float(const char*, const char*)
{
do_test(float(0), "float");
}
void test_double(const char*, const char*)
{
do_test(double(0), "double");
}
void test_long(const char*, const char*)
{
do_test((long double)(0), "long double");
}
void test_all(const char*, const char*)
{
do_test(float(0), "float");
do_test(double(0), "double");
do_test((long double)(0), "long double");
}
template <class T>
void do_test_n(T, const char* name, unsigned count)
{
boost::math::ntl::RR::SetPrecision(working_precision);
if(started)
{
//
// We want to test the approximation at fixed precision:
// either float, double or long double. Begin by getting the
// polynomials:
//
boost::math::tools::polynomial<T> n, d;
n = p_remez->numerator();
d = p_remez->denominator();
boost::math::ntl::RR max_error(0);
boost::math::ntl::RR step = (b - a) / count;
//
// Do the tests at the zeros:
//
std::cout << "Starting tests at " << name << " precision...\n";
std::cout << "Absissa Error\n";
for(boost::math::ntl::RR x = a; x <= b; x += step)
{
boost::math::ntl::RR true_result = the_function(x);
T absissa = boost::math::tools::real_cast<T>(x);
boost::math::ntl::RR test_result = n.evaluate(absissa) / d.evaluate(absissa);
boost::math::ntl::RR err;
if(rel_error)
{
err = boost::math::tools::relative_error(test_result, true_result);
}
else
{
err = fabs(test_result - true_result);
}
if(err > max_error)
max_error = err;
std::cout << std::setprecision(6) << std::setw(15) << std::left << boost::math::tools::real_cast<double>(absissa)
<< (test_result < true_result ? "-" : "") << boost::math::tools::real_cast<double>(err) << std::endl;
}
std::cout << "Max error found: " << std::setprecision(6) << boost::math::tools::real_cast<T>(max_error) << std::endl;
}
else
{
std::cout << "Nothing to test: try converging an approximation first!!!" << std::endl;
}
}
void test_n(unsigned n)
{
do_test_n(boost::math::ntl::RR(), "boost::math::ntl::RR", n);
}
void test_float_n(unsigned n)
{
do_test_n(float(0), "float", n);
}
void test_double_n(unsigned n)
{
do_test_n(double(0), "double", n);
}
void test_long_n(unsigned n)
{
do_test_n((long double)(0), "long double", n);
}
void rotate(const char*, const char*)
{
if(p_remez)
{
p_remez->rotate();
}
else
{
std::cerr << "Nothing to rotate" << std::endl;
}
}
void rescale(const char*, const char*)
{
if(p_remez)
{
p_remez->rescale(a, b);
}
else
{
std::cerr << "Nothing to rescale" << std::endl;
}
}
void graph_poly(const char*, const char*)
{
int i = 50;
boost::math::ntl::RR::SetPrecision(working_precision);
if(started)
{
//
// We want to test the approximation at fixed precision:
// either float, double or long double. Begin by getting the
// polynomials:
//
boost::math::tools::polynomial<boost::math::ntl::RR> n, d;
n = p_remez->numerator();
d = p_remez->denominator();
boost::math::ntl::RR max_error(0);
boost::math::ntl::RR step = (b - a) / i;
std::cout << "Evaluating Numerator...\n";
boost::math::ntl::RR val;
for(val = a; val <= b; val += step)
std::cout << n.evaluate(val) << std::endl;
std::cout << "Evaluating Denominator...\n";
for(val = a; val <= b; val += step)
std::cout << d.evaluate(val) << std::endl;
}
else
{
std::cout << "Nothing to test: try converging an approximation first!!!" << std::endl;
}
}
int test_main(int, char* [])
{
std::string line;
while(std::getline(std::cin, line))
{
if(parse(line.c_str(), str_p("quit"), space_p).full)
return 0;
if(false == parse(line.c_str(),
(
str_p("range")[assign_a(started, false)] && real_p[assign_a(a)] && real_p[assign_a(b)]
||
str_p("relative")[assign_a(started, false)][assign_a(rel_error, true)]
||
str_p("absolute")[assign_a(started, false)][assign_a(rel_error, false)]
||
str_p("pin")[assign_a(started, false)] && str_p("true")[assign_a(pin, true)]
||
str_p("pin")[assign_a(started, false)] && str_p("false")[assign_a(pin, false)]
||
str_p("pin")[assign_a(started, false)] && str_p("1")[assign_a(pin, true)]
||
str_p("pin")[assign_a(started, false)] && str_p("0")[assign_a(pin, false)]
||
str_p("pin")[assign_a(started, false)][assign_a(pin, true)]
||
str_p("order")[assign_a(started, false)] && uint_p[assign_a(orderN)] && uint_p[assign_a(orderD)]
||
str_p("order")[assign_a(started, false)] && uint_p[assign_a(orderN)]
||
str_p("target-precision") && uint_p[assign_a(target_precision)]
||
str_p("working-precision")[assign_a(started, false)] && uint_p[assign_a(working_precision)]
||
str_p("variant")[assign_a(started, false)] && int_p[assign_a(variant)]
||
str_p("skew")[assign_a(started, false)] && int_p[assign_a(skew)]
||
str_p("brake") && int_p[assign_a(brake)]
||
str_p("step") && int_p[&step_some]
||
str_p("step")[&step]
||
str_p("poly")[&graph_poly]
||
str_p("info")[&show]
||
str_p("graph") && uint_p[&do_graph]
||
str_p("graph")[&graph]
||
str_p("x-offset") && real_p[assign_a(x_offset)]
||
str_p("y-offset") && str_p("auto")[assign_a(auto_offset_y, true)]
||
str_p("y-offset") && real_p[assign_a(y_offset)][assign_a(auto_offset_y, false)]
||
str_p("test") && str_p("float") && uint_p[&test_float_n]
||
str_p("test") && str_p("float")[&test_float]
||
str_p("test") && str_p("double") && uint_p[&test_double_n]
||
str_p("test") && str_p("double")[&test_double]
||
str_p("test") && str_p("long") && uint_p[&test_long_n]
||
str_p("test") && str_p("long")[&test_long]
||
str_p("test") && str_p("all")[&test_all]
||
str_p("test") && uint_p[&test_n]
||
str_p("rotate")[&rotate]
||
str_p("rescale") && real_p[assign_a(a)] && real_p[assign_a(b)] && epsilon_p[&rescale]
), space_p).full)
{
std::cout << "Unable to parse directive: \"" << line << "\"" << std::endl;
}
else
{
std::cout << "a = " << a << std::endl;
std::cout << "b = " << b << std::endl;
std::cout << "Relative Error = " << rel_error << std::endl;
std::cout << "Pin to Origin = " << pin << std::endl;
std::cout << "Order (Numerator) = " << orderN << std::endl;
std::cout << "Order (Denominator) = " << orderD << std::endl;
std::cout << "Target Precision = " << target_precision << std::endl;
std::cout << "Working Precision = " << working_precision << std::endl;
std::cout << "Variant = " << variant << std::endl;
std::cout << "Skew = " << skew << std::endl;
std::cout << "Brake = " << brake << std::endl;
std::cout << "X Offset = " << x_offset << std::endl;
std::cout << "Y Offset = " << y_offset << std::endl;
std::cout << "Automatic Y Offset = " << auto_offset_y << std::endl;
}
}
return 0;
}