mirror of
https://github.com/boostorg/math.git
synced 2026-01-19 04:22:09 +00:00
77 lines
2.4 KiB
C++
77 lines
2.4 KiB
C++
// (C) Copyright John Maddock 2006
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt
|
|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#ifdef _MSC_VER
|
|
# pragma warning(disable: 4512) // assignment operator could not be generated.
|
|
# pragma warning(disable: 4510) // default constructor could not be generated.
|
|
# pragma warning(disable: 4610) // can never be instantiated - user defined constructor required.
|
|
#endif
|
|
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <boost/math/distributions/binomial.hpp>
|
|
|
|
void find_max_sample_size(double p, unsigned successes)
|
|
{
|
|
//
|
|
// p = success ratio.
|
|
// successes = Total number of observed successes.
|
|
//
|
|
// Calculate how many trials we can have to ensure the
|
|
// maximum number of successes does not exceed "successes".
|
|
// A typical use would be failure analysis, where you want
|
|
// zero or fewer "successes" with some probability.
|
|
//
|
|
using namespace std;
|
|
using namespace boost::math;
|
|
|
|
// Print out general info:
|
|
cout <<
|
|
"________________________\n"
|
|
"Maximum Number of Trials\n"
|
|
"________________________\n\n";
|
|
cout << setprecision(7);
|
|
cout << setw(40) << left << "Success ratio" << "= " << p << "\n";
|
|
cout << setw(40) << left << "Maximum Number of \"successes\" permitted" << "= " << successes << "\n";
|
|
//
|
|
// Define a table of confidence intervals:
|
|
//
|
|
double alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };
|
|
//
|
|
// Print table header:
|
|
//
|
|
cout << "\n\n"
|
|
"____________________________\n"
|
|
"Confidence Max Number\n"
|
|
" Value (%) Of Trials \n"
|
|
"____________________________\n";
|
|
//
|
|
// Now print out the data for the table rows.
|
|
//
|
|
for(unsigned i = 0; i < sizeof(alpha)/sizeof(alpha[0]); ++i)
|
|
{
|
|
// Confidence value:
|
|
cout << fixed << setprecision(3) << setw(10) << right << 100 * (1-alpha[i]);
|
|
// calculate trials:
|
|
double t = binomial_distribution<>::find_maximum_number_of_trials(successes, p, alpha[i]);
|
|
t = floor(t);
|
|
// Print Trials:
|
|
cout << fixed << setprecision(0) << setw(15) << right << t << endl;
|
|
}
|
|
cout << endl;
|
|
}
|
|
|
|
int main()
|
|
{
|
|
find_max_sample_size(1.0/1000, 0);
|
|
find_max_sample_size(1.0/10000, 0);
|
|
find_max_sample_size(1.0/100000, 0);
|
|
find_max_sample_size(1.0/1000000, 0);
|
|
|
|
return 0;
|
|
}
|
|
|