mirror of
https://github.com/boostorg/math.git
synced 2026-01-19 04:22:09 +00:00
148 lines
5.1 KiB
C++
148 lines
5.1 KiB
C++
/*
|
|
* Copyright Nick Thompson, 2023
|
|
* Use, modification and distribution are subject to the
|
|
* Boost Software License, Version 1.0. (See accompanying file
|
|
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
*/
|
|
|
|
#include "math_unit_test.hpp"
|
|
#include <boost/math/constants/constants.hpp>
|
|
#include <boost/math/tools/differential_evolution.hpp>
|
|
#include <random>
|
|
|
|
using boost::math::constants::e;
|
|
using boost::math::constants::two_pi;
|
|
using boost::math::tools::differential_evolution;
|
|
using boost::math::tools::differential_evolution_parameters;
|
|
using std::cbrt;
|
|
using std::cos;
|
|
using std::exp;
|
|
using std::sqrt;
|
|
|
|
// Taken from: https://en.wikipedia.org/wiki/Test_functions_for_optimization
|
|
template <typename Real> Real ackley(std::array<Real, 2> const &v) {
|
|
Real x = v[0];
|
|
Real y = v[1];
|
|
Real arg1 = -sqrt((x * x + y * y) / 2) / 5;
|
|
Real arg2 = cos(two_pi<Real>() * x) + cos(two_pi<Real>() * y);
|
|
return -20 * exp(arg1) - exp(arg2 / 2) + 20 + e<Real>();
|
|
}
|
|
|
|
template <class Real> void test_ackley() {
|
|
using ArgType = std::array<Real, 2>;
|
|
auto de_params = differential_evolution_parameters<ArgType>();
|
|
de_params.lower_bounds = {-5, -5};
|
|
de_params.upper_bounds = {5, 5};
|
|
|
|
std::mt19937_64 gen(12345);
|
|
auto local_minima = differential_evolution(ackley<Real>, de_params, gen);
|
|
CHECK_LE(std::abs(local_minima[0]), 10 * std::numeric_limits<Real>::epsilon());
|
|
CHECK_LE(std::abs(local_minima[1]), 10 * std::numeric_limits<Real>::epsilon());
|
|
|
|
// Does it work with a lambda?
|
|
auto ack = [](std::array<Real, 2> const &x) { return ackley<Real>(x); };
|
|
local_minima = differential_evolution(ack, de_params, gen);
|
|
CHECK_LE(std::abs(local_minima[0]), 10 * std::numeric_limits<Real>::epsilon());
|
|
CHECK_LE(std::abs(local_minima[1]), 10 * std::numeric_limits<Real>::epsilon());
|
|
|
|
// Test that if an intial guess is the exact solution, the returned solution is the exact solution:
|
|
std::array<Real, 2> initial_guess{0, 0};
|
|
de_params.initial_guess = &initial_guess;
|
|
local_minima = differential_evolution(ack, de_params, gen);
|
|
CHECK_EQUAL(local_minima[0], Real(0));
|
|
CHECK_EQUAL(local_minima[1], Real(0));
|
|
}
|
|
|
|
template <typename Real> auto rosenbrock_saddle(std::array<Real, 2> const &v) {
|
|
auto x = v[0];
|
|
auto y = v[1];
|
|
return 100 * (x * x - y) * (x * x - y) + (1 - x) * (1 - x);
|
|
}
|
|
|
|
template <class Real> void test_rosenbrock_saddle() {
|
|
using ArgType = std::array<Real, 2>;
|
|
auto de_params = differential_evolution_parameters<ArgType>();
|
|
de_params.lower_bounds = {0.5, 0.5};
|
|
de_params.upper_bounds = {2.048, 2.048};
|
|
std::mt19937_64 gen(234568);
|
|
auto local_minima = differential_evolution(rosenbrock_saddle<Real>, de_params, gen);
|
|
|
|
CHECK_ABSOLUTE_ERROR(Real(1), local_minima[0], 10 * std::numeric_limits<Real>::epsilon());
|
|
CHECK_ABSOLUTE_ERROR(Real(1), local_minima[1], 10 * std::numeric_limits<Real>::epsilon());
|
|
|
|
// Does cancellation work?
|
|
std::atomic<bool> cancel = true;
|
|
gen.seed(12345);
|
|
local_minima =
|
|
differential_evolution(rosenbrock_saddle<Real>, de_params, gen, std::numeric_limits<Real>::quiet_NaN(), &cancel);
|
|
CHECK_GE(std::abs(local_minima[0] - Real(1)), std::sqrt(std::numeric_limits<Real>::epsilon()));
|
|
}
|
|
|
|
template <class Real> Real rastrigin(std::vector<Real> const &v) {
|
|
Real A = 10;
|
|
Real y = 10 * v.size();
|
|
for (auto x : v) {
|
|
y += x * x - A * cos(two_pi<Real>() * x);
|
|
}
|
|
return y;
|
|
}
|
|
|
|
template <class Real> void test_rastrigin() {
|
|
using ArgType = std::vector<Real>;
|
|
auto de_params = differential_evolution_parameters<ArgType>();
|
|
de_params.lower_bounds.resize(8, static_cast<Real>(-5.12));
|
|
de_params.upper_bounds.resize(8, static_cast<Real>(5.12));
|
|
std::mt19937_64 gen(34567);
|
|
auto local_minima = differential_evolution(rastrigin<Real>, de_params, gen);
|
|
for (auto x : local_minima) {
|
|
CHECK_ABSOLUTE_ERROR(x, Real(0), Real(2e-4));
|
|
}
|
|
|
|
// By definition, the value of the function which a target value is provided must be <= target_value.
|
|
Real target_value = 1e-3;
|
|
local_minima = differential_evolution(rastrigin<Real>, de_params, gen, target_value);
|
|
CHECK_LE(rastrigin(local_minima), target_value);
|
|
}
|
|
|
|
double sphere(std::vector<float> const &v) {
|
|
double r = 0.0;
|
|
for (auto x : v) {
|
|
double x_ = static_cast<double>(x);
|
|
r += x_ * x_;
|
|
}
|
|
if (r >= 1) {
|
|
return std::numeric_limits<double>::quiet_NaN();
|
|
}
|
|
return r;
|
|
}
|
|
|
|
// Tests NaN return types and return type != input type:
|
|
void test_sphere() {
|
|
using ArgType = std::vector<float>;
|
|
auto de_params = differential_evolution_parameters<ArgType>();
|
|
de_params.lower_bounds.resize(8, -1);
|
|
de_params.upper_bounds.resize(8, 1);
|
|
de_params.NP *= 10;
|
|
de_params.max_generations *= 10;
|
|
std::mt19937_64 gen(56789);
|
|
auto local_minima = differential_evolution(sphere, de_params, gen);
|
|
for (auto x : local_minima) {
|
|
CHECK_ABSOLUTE_ERROR(0.0f, x, 2e-4f);
|
|
}
|
|
}
|
|
|
|
#define GCC_COMPILER (defined(__GNUC__) && !defined(__clang__))
|
|
|
|
int main() {
|
|
// GCC<=8 rejects the function call syntax we use here.
|
|
// Just do a workaround:
|
|
#if !defined(GCC_COMPILER) || (defined(GCC_COMPILER) && __GNUC__ >= 9)
|
|
test_ackley<float>();
|
|
test_ackley<double>();
|
|
test_rosenbrock_saddle<double>();
|
|
test_rastrigin<float>();
|
|
#endif
|
|
test_sphere();
|
|
return boost::math::test::report_errors();
|
|
}
|