2
0
mirror of https://github.com/boostorg/math.git synced 2026-01-19 04:22:09 +00:00
Files
math/test/test_erf.cpp
John Maddock 4ecb968fc7 Begun to refactor and tighten up the tests so that results are actually regression tested as well as printed to screen.
Added code for extracting the sign of a number.
Fixed a few bugs and tidied up the code a little in places.
Changed test_result to properly encapsulate it's contents.


[SVN r3106]
2006-07-25 09:17:33 +00:00

294 lines
11 KiB
C++

// (C) Copyright John Maddock 2006.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/math/concepts/real_concept.hpp>
#include <boost/test/included/test_exec_monitor.hpp>
#include <boost/test/floating_point_comparison.hpp>
#include <boost/math/special_functions/erf.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
#include <boost/lambda/lambda.hpp>
#include <boost/lambda/bind.hpp>
#include "test_erf_hooks.hpp"
#include "handle_test_result.hpp"
//
// DESCRIPTION:
// ~~~~~~~~~~~~
//
// This file tests the functions erf, erfc, and the inverses
// erf_inv and erfc_inv. There are two sets of tests, spot
// tests which compare our results with selected values computed
// using the online special function calculator at
// functions.wolfram.com, while the bulk of the accuracy tests
// use values generated with NTL::RR at 1000-bit precision
// and our generic versions of these functions.
//
// Note that when this file is first run on a new platform many of
// these tests will fail: the default accuracy is 1 epsilon which
// is too tight for most platforms. In this situation you will
// need to cast a human eye over the error rates reported and make
// a judgement as to whether they are acceptable. Either way please
// report the results to the Boost mailing list. Acceptable rates of
// error are marked up below as a series of regular expressions that
// identify the compiler/stdlib/platform/data-type/test-data/test-function
// along with the maximum expected peek and RMS mean errors for that
// test.
//
void expected_results()
{
//
// Define the max and mean errors expected for
// various compilers and platforms.
//
add_expected_result(
"Microsoft.*", // compiler
".*", // stdlib
".*", // platform
"real_concept", // test type(s)
"Erf Function:.*", // test data group
"boost::math::erfc?", 4, 3); // test function
//
// Catch all cases come last:
//
add_expected_result(
".*", // compiler
".*", // stdlib
".*", // platform
".*", // test type(s)
"Erf Function:.*", // test data group
"boost::math::erfc?", 2, 2); // test function
add_expected_result(
".*", // compiler
".*", // stdlib
".*", // platform
".*", // test type(s)
"Inverse Erf.*", // test data group
"boost::math::erfc?_inv", 14, 4); // test function
//
// Finish off by printing out the compiler/stdlib/platform names,
// we do this to make it easier to mark up expected error rates.
//
std::cout << "Tests run with " << BOOST_COMPILER << ", "
<< BOOST_STDLIB << ", " << BOOST_PLATFORM << std::endl;
}
template <class T>
void do_test_erf(const T& data, const char* type_name, const char* test_name)
{
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
typedef value_type (*pg)(value_type);
pg funcp = boost::math::erf;
boost::math::tools::test_result<value_type> result;
std::cout << "Testing " << test_name << " with type " << type_name
<< "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";
//
// test erf against data:
//
result = boost::math::tools::test(
data,
boost::lambda::bind(funcp,
boost::lambda::ret<value_type>(boost::lambda::_1[0])),
boost::lambda::ret<value_type>(boost::lambda::_1[1]));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::erf", test_name);
#ifdef TEST_OTHER
if(::boost::is_floating_point<value_type>::value){
funcp = other::erf;
result = boost::math::tools::test(
data,
boost::lambda::bind(funcp,
boost::lambda::ret<value_type>(boost::lambda::_1[0])),
boost::lambda::ret<value_type>(boost::lambda::_1[1]));
print_test_result(result, data[result.worst()], result.worst(), type_name, "other::erf");
}
#endif
//
// test erfc against data:
//
funcp = boost::math::erfc;
result = boost::math::tools::test(
data,
boost::lambda::bind(funcp,
boost::lambda::ret<value_type>(boost::lambda::_1[0])),
boost::lambda::ret<value_type>(boost::lambda::_1[2]));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::erfc", test_name);
#ifdef TEST_OTHER
if(::boost::is_floating_point<value_type>::value){
funcp = other::erfc;
result = boost::math::tools::test(
data,
boost::lambda::bind(funcp,
boost::lambda::ret<value_type>(boost::lambda::_1[0])),
boost::lambda::ret<value_type>(boost::lambda::_1[2]));
print_test_result(result, data[result.worst()], result.worst(), type_name, "other::erfc");
}
#endif
std::cout << std::endl;
}
template <class T>
void do_test_erf_inv(const T& data, const char* type_name, const char* test_name)
{
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
typedef value_type (*pg)(value_type);
pg funcp = boost::math::erf;
boost::math::tools::test_result<value_type> result;
std::cout << "Testing " << test_name << " with type " << type_name
<< "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";
//
// test erf_inv against data:
//
funcp = boost::math::erf_inv;
result = boost::math::tools::test(
data,
boost::lambda::bind(funcp,
boost::lambda::ret<value_type>(boost::lambda::_1[0])),
boost::lambda::ret<value_type>(boost::lambda::_1[1]));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::erf_inv", test_name);
std::cout << std::endl;
}
template <class T>
void do_test_erfc_inv(const T& data, const char* type_name, const char* test_name)
{
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
typedef value_type (*pg)(value_type);
pg funcp = boost::math::erf;
boost::math::tools::test_result<value_type> result;
std::cout << "Testing " << test_name << " with type " << type_name
<< "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";
//
// test erfc_inv against data:
//
funcp = boost::math::erfc_inv;
result = boost::math::tools::test(
data,
boost::lambda::bind(funcp,
boost::lambda::ret<value_type>(boost::lambda::_1[0])),
boost::lambda::ret<value_type>(boost::lambda::_1[1]));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::erfc_inv", test_name);
std::cout << std::endl;
}
template <class T>
void test_erf(T, const char* name)
{
//
// The actual test data is rather verbose, so it's in a separate file
//
// The contents are as follows, each row of data contains
// three items, input value a, input value b and erf(a, b):
//
# include "erf_small_data.ipp"
do_test_erf(erf_small_data, name, "Erf Function: Small Values");
# include "erf_data.ipp"
do_test_erf(erf_data, name, "Erf Function: Medium Values");
# include "erf_large_data.ipp"
do_test_erf(erf_large_data, name, "Erf Function: Large Values");
# include "erf_inv_data.ipp"
do_test_erf_inv(erf_inv_data, name, "Inverse Erf Function");
# include "erfc_inv_data.ipp"
do_test_erfc_inv(erfc_inv_data, name, "Inverse Erfc Function");
}
template <class T>
void test_spots(T, const char* t)
{
std::cout << "Testing basic sanity checks for type " << t << std::endl;
//
// basic sanity checks, tolerance is 10 epsilon expressed as a percentage:
//
T tolerance = boost::math::tools::epsilon<T>() * 1000;
BOOST_CHECK_CLOSE(::boost::math::erfc(static_cast<T>(0.125)), static_cast<T>(0.859683795198666182606970553478L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::erfc(static_cast<T>(0.5)), static_cast<T>(0.479500122186953462317253346108L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::erfc(static_cast<T>(1)), static_cast<T>(0.157299207050285130658779364917L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::erfc(static_cast<T>(5)), static_cast<T>(1.53745979442803485018834348538e-12L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::erfc(static_cast<T>(-0.125)), static_cast<T>(1.14031620480133381739302944652L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::erfc(static_cast<T>(-0.5)), static_cast<T>(1.52049987781304653768274665389L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::erfc(static_cast<T>(0)), static_cast<T>(1), tolerance);
BOOST_CHECK_CLOSE(::boost::math::erf(static_cast<T>(0.125)), static_cast<T>(0.140316204801333817393029446522L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::erf(static_cast<T>(0.5)), static_cast<T>(0.520499877813046537682746653892L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::erf(static_cast<T>(1)), static_cast<T>(0.842700792949714869341220635083L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::erf(static_cast<T>(5)), static_cast<T>(0.99999999999846254020557196515L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::erf(static_cast<T>(-0.125)), static_cast<T>(-0.140316204801333817393029446522L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::erf(static_cast<T>(-0.5)), static_cast<T>(-0.520499877813046537682746653892L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::erf(static_cast<T>(0)), static_cast<T>(0), tolerance);
tolerance = boost::math::tools::epsilon<T>() * 100 * 200; // 200 eps %.
#if defined(__CYGWIN__)
// some platforms long double is only reliably accurate to double precision:
if(sizeof(T) == sizeof(long double))
tolerance = boost::math::tools::epsilon<double>() * 100 * 200; // 200 eps %.
#endif
for(T i = -0.95f; i < 1; i += 0.125f)
{
T inv = boost::math::erf_inv(i);
T b = boost::math::erf(inv);
BOOST_CHECK_CLOSE(b, i, tolerance);
}
for(T j = 0.125f; j < 2; j += 0.125f)
{
T inv = boost::math::erfc_inv(j);
T b = boost::math::erfc(inv);
BOOST_CHECK_CLOSE(b, j, tolerance);
}
}
int test_main(int, char* [])
{
test_spots(0.0F, "float");
test_spots(0.0, "double");
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_spots(0.0L, "long double");
test_spots(boost::math::concepts::real_concept(0.1), "real_concept");
#endif
expected_results();
test_erf(0.1F, "float");
test_erf(0.1, "double");
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_erf(0.1L, "long double");
test_erf(boost::math::concepts::real_concept(0.1), "real_concept");
#else
std::cout << "<note>The long double tests have been disabled on this platform "
"either because the long double overloads of the usual math functions are "
"not available at all, or because they are too inaccurate for these tests "
"to pass.</note>" << std::cout;
#endif
return 0;
}