2
0
mirror of https://github.com/boostorg/math.git synced 2026-01-30 08:02:11 +00:00
Files
math/doc/html/math_toolkit/overview0.html
John Maddock 9f17b2d2e7 Duplicated more of Trunk's files so we can check links.
Search-and-replace fixed a bunch of links.
Regenerate docs.

[SVN r84208]
2013-05-09 17:58:27 +00:00

77 lines
5.1 KiB
HTML

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Overview</title>
<link rel="stylesheet" href="../boostbook.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.78.1">
<link rel="home" href="../index.html" title="Math Toolkit">
<link rel="up" href="../octonions.html" title="Chapter&#160;9.&#160;Octonions">
<link rel="prev" href="../octonions.html" title="Chapter&#160;9.&#160;Octonions">
<link rel="next" href="header0.html" title="Header File">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<div class="spirit-nav">
<a accesskey="p" href="../octonions.html"><img src="../images/prev.png" alt="Prev"></a><a accesskey="u" href="../octonions.html"><img src="../images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a><a accesskey="n" href="header0.html"><img src="../images/next.png" alt="Next"></a>
</div>
<div class="section math_toolkit_overview0">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="math_toolkit.overview0"></a><a class="link" href="overview0.html" title="Overview">Overview</a>
</h2></div></div></div>
<p>
Octonions, like <a href="../../../quaternion/html/index.html" target="_top">quaternions</a>,
are a relative of complex numbers.
</p>
<p>
Octonions see some use in theoretical physics.
</p>
<p>
In practical terms, an octonion is simply an octuple of real numbers (&#945;,&#946;,&#947;,&#948;,&#949;,&#950;,&#951;,&#952;), which
we can write in the form <span class="emphasis"><em><code class="literal">o = &#945; + &#946;i + &#947;j + &#948;k + &#949;e' + &#950;i' + &#951;j' + &#952;k'</code></em></span>, where
<span class="emphasis"><em><code class="literal">i</code></em></span>, <span class="emphasis"><em><code class="literal">j</code></em></span>
and <span class="emphasis"><em><code class="literal">k</code></em></span> are the same objects as for quaternions,
and <span class="emphasis"><em><code class="literal">e'</code></em></span>, <span class="emphasis"><em><code class="literal">i'</code></em></span>,
<span class="emphasis"><em><code class="literal">j'</code></em></span> and <span class="emphasis"><em><code class="literal">k'</code></em></span>
are distinct objects which play essentially the same kind of role as <span class="emphasis"><em><code class="literal">i</code></em></span>
(or <span class="emphasis"><em><code class="literal">j</code></em></span> or <span class="emphasis"><em><code class="literal">k</code></em></span>).
</p>
<p>
Addition and a multiplication is defined on the set of octonions, which generalize
their quaternionic counterparts. The main novelty this time is that <span class="bold"><strong>the multiplication is not only not commutative, is now not even
associative</strong></span> (i.e. there are octonions <span class="emphasis"><em><code class="literal">x</code></em></span>,
<span class="emphasis"><em><code class="literal">y</code></em></span> and <span class="emphasis"><em><code class="literal">z</code></em></span>
such that <span class="emphasis"><em><code class="literal">x(yz) &#8800; (xy)z</code></em></span>). A way of remembering
things is by using the following multiplication table:
</p>
<p>
<span class="inlinemediaobject"><img src="../../../../octonion/graphics/octonion_blurb17.jpeg"></span>
</p>
<p>
Octonions (and their kin) are described in far more details in this other
<a href="../../../quaternion/TQE.pdf" target="_top">document</a> (with <a href="../../../quaternion/TQE_EA.pdf" target="_top">errata
and addenda</a>).
</p>
<p>
Some traditional constructs, such as the exponential, carry over without too
much change into the realms of octonions, but other, such as taking a square
root, do not (the fact that the exponential has a closed form is a result of
the author, but the fact that the exponential exists at all for octonions is
known since quite a long time ago).
</p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright &#169; 2006-2010, 2012, 2013 Paul A. Bristow, Christopher Kormanyos,
Hubert Holin, Bruno Lalande, John Maddock, Johan R&#229;de, Gautam Sewani, Benjamin
Sobotta, Thijs van den Berg, Daryle Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="../octonions.html"><img src="../images/prev.png" alt="Prev"></a><a accesskey="u" href="../octonions.html"><img src="../images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a><a accesskey="n" href="header0.html"><img src="../images/next.png" alt="Next"></a>
</div>
</body>
</html>