2
0
mirror of https://github.com/boostorg/math.git synced 2026-01-19 04:22:09 +00:00
Files
math/test/wavelet_transform_test.cpp

125 lines
4.0 KiB
C++

/*
* Copyright Nick Thompson, 2020
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#include "math_unit_test.hpp"
#include <numeric>
#include <utility>
#include <iomanip>
#include <iostream>
#include <cmath>
#include <boost/core/demangle.hpp>
#include <boost/hana/for_each.hpp>
#include <boost/hana/ext/std/integer_sequence.hpp>
#include <boost/math/quadrature/wavelet_transforms.hpp>
#include <boost/math/tools/minima.hpp>
#include <boost/math/quadrature/trapezoidal.hpp>
#ifdef BOOST_HAS_FLOAT128
#include <boost/multiprecision/float128.hpp>
using boost::multiprecision::float128;
#endif
using boost::math::constants::pi;
using boost::math::constants::root_two;
using boost::math::quadrature::daubechies_wavelet_transform;
using boost::math::quadrature::trapezoidal;
template<typename Real, int p>
void test_wavelet_transform()
{
std::cout << "Testing wavelet transform of " << p << " vanishing moment Daubechies wavelet on type " << boost::core::demangle(typeid(Real).name()) << "\n";
auto psi = boost::math::daubechies_wavelet<Real, p>();
auto abs_psi = [&psi](Real x) {
return abs(psi(x));
};
auto [a, b] = psi.support();
auto psil1 = trapezoidal(abs_psi, a, b);
Real psi_sup_norm = 0;
for (double x = a; x < b; x += 0.0001)
{
Real y = psi(x);
if (std::abs(y) > psi_sup_norm)
{
psi_sup_norm = std::abs(y);
}
}
std::cout << "psi sup norm = " << psi_sup_norm << "\n";
// An even function:
auto f = [](Real x) {
return std::exp(-abs(x));
};
Real fmax = 1;
Real fl2 = 1;
Real fl1 = 2;
std::cout << "||f||_1 = " << fl1 << "\n";
std::cout << "||f||_2 = " << fl2 << "\n";
auto Wf = daubechies_wavelet_transform(f, psi);
for (double s = 0; s < 10; s += 0.01)
{
Real w1 = Wf(s, 0.0);
Real w2 = Wf(-s, 0.0);
// Since f is an even function, we get w1 = w2:
CHECK_ULP_CLOSE(w1, w2, 12);
}
// The wavelet transform with respect to Daubechies wavelets
for (double s = -10; s < 10; s += 0.1)
{
for (double t = -10; t < 10; t+= 0.1)
{
Real w = Wf(s, t);
// Integral inequality:
Real r1 = sqrt(abs(s))*fmax*psil1;
if(abs(w) > r1)
{
std::cerr << " Integral inequality | int fg| <= ||f||_infty ||psi||_1 is violated.\n";
}
if (s != 0)
{
Real r2 = fl1*psi_sup_norm/sqrt(abs(s));
if(abs(w) > r2)
{
std::cerr << " Integral inequality | int fg| <= ||f||_1 ||psi||_infty/sqrt(|s|) is violated.\n";
std::cerr << " Violation: " << abs(w) << " !<= " << r2 << "\n";
}
Real r3 = fmax*psil1/sqrt(abs(s));
if(abs(w) > r3)
{
std::cerr << " Integral inequality | int fg| <= ||f||_infty ||psi||_1/sqrt(|s|) is violated.\n";
std::cerr << " Computed = " << abs(w) << ", expected " << r3 << "\n";
}
}
if (abs(w) > fl2)
{
std::cerr << " Integral inequality |f psi_s,t| <= ||f||_2 ||psi||2 violated.\n";
}
Real r4 = sqrt(abs(s))*fl1*psi_sup_norm;
if (abs(w) > r4)
{
std::cerr << " Integral inequality |W[f](s,t)| <= sqrt(|s|)||f||_1 ||psi||_infty is violated.\n";
}
Real r5 = sqrt(abs(s))*fmax*psil1;
if (abs(w) > r5)
{
std::cerr << " Integral inequality |W[f](s,t)| <= sqrt(|s|)||f||_infty ||psi||_1 is violated.\n";
}
}
}
}
int main()
{
boost::hana::for_each(std::make_index_sequence<17>(), [&](auto i) {
test_wavelet_transform<double, i+3>();
});
return boost::math::test::report_errors();
}