mirror of
https://github.com/boostorg/math.git
synced 2026-01-24 06:02:08 +00:00
The Newton-Raphson method has an option to log convergence via `BOOST_MATH_INSTRUMENT`. However, too much information was give about some things which were not super helpful, and too little about residuals. In addition, remove buffer flushes as they slow down the process dramatically.
323 lines
13 KiB
C++
323 lines
13 KiB
C++
// (C) Copyright John Maddock 2015.
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0. (See accompanying file
|
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#include "pch.hpp"
|
|
|
|
#define BOOST_TEST_MAIN
|
|
#include <boost/test/unit_test.hpp>
|
|
#include <boost/test/tools/floating_point_comparison.hpp>
|
|
#include <boost/math/tools/roots.hpp>
|
|
#include <boost/test/results_collector.hpp>
|
|
#include <boost/test/unit_test.hpp>
|
|
#include <boost/math/special_functions/cbrt.hpp>
|
|
#include <boost/math/special_functions/beta.hpp>
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <tuple>
|
|
#include "table_type.hpp"
|
|
|
|
// No derivatives - using TOMS748 internally.
|
|
struct cbrt_functor_noderiv
|
|
{ // cube root of x using only function - no derivatives.
|
|
cbrt_functor_noderiv(double to_find_root_of) : a(to_find_root_of)
|
|
{ // Constructor just stores value a to find root of.
|
|
}
|
|
double operator()(double x)
|
|
{
|
|
double fx = x*x*x - a; // Difference (estimate x^3 - a).
|
|
return fx;
|
|
}
|
|
private:
|
|
double a; // to be 'cube_rooted'.
|
|
}; // template <class T> struct cbrt_functor_noderiv
|
|
|
|
// Using 1st derivative only Newton-Raphson
|
|
struct cbrt_functor_deriv
|
|
{ // Functor also returning 1st derivative.
|
|
cbrt_functor_deriv(double const& to_find_root_of) : a(to_find_root_of)
|
|
{ // Constructor stores value a to find root of,
|
|
// for example: calling cbrt_functor_deriv<double>(x) to use to get cube root of x.
|
|
}
|
|
std::pair<double, double> operator()(double const& x)
|
|
{ // Return both f(x) and f'(x).
|
|
double fx = x*x*x - a; // Difference (estimate x^3 - value).
|
|
double dx = 3 * x*x; // 1st derivative = 3x^2.
|
|
return std::make_pair(fx, dx); // 'return' both fx and dx.
|
|
}
|
|
private:
|
|
double a; // to be 'cube_rooted'.
|
|
};
|
|
// Using 1st and 2nd derivatives with Halley algorithm.
|
|
struct cbrt_functor_2deriv
|
|
{ // Functor returning both 1st and 2nd derivatives.
|
|
cbrt_functor_2deriv(double const& to_find_root_of) : a(to_find_root_of)
|
|
{ // Constructor stores value a to find root of, for example:
|
|
// calling cbrt_functor_2deriv<double>(x) to get cube root of x,
|
|
}
|
|
std::tuple<double, double, double> operator()(double const& x)
|
|
{ // Return both f(x) and f'(x) and f''(x).
|
|
double fx = x*x*x - a; // Difference (estimate x^3 - value).
|
|
double dx = 3 * x*x; // 1st derivative = 3x^2.
|
|
double d2x = 6 * x; // 2nd derivative = 6x.
|
|
return std::make_tuple(fx, dx, d2x); // 'return' fx, dx and d2x.
|
|
}
|
|
private:
|
|
double a; // to be 'cube_rooted'.
|
|
};
|
|
|
|
template <class T, class Policy>
|
|
struct ibeta_roots_1 // for first order algorithms
|
|
{
|
|
ibeta_roots_1(T _a, T _b, T t, bool inv = false)
|
|
: a(_a), b(_b), target(t), invert(inv) {}
|
|
|
|
T operator()(const T& x)
|
|
{
|
|
return boost::math::detail::ibeta_imp(a, b, x, Policy(), invert, true) - target;
|
|
}
|
|
private:
|
|
T a, b, target;
|
|
bool invert;
|
|
};
|
|
|
|
template <class T, class Policy>
|
|
struct ibeta_roots_2 // for second order algorithms
|
|
{
|
|
ibeta_roots_2(T _a, T _b, T t, bool inv = false)
|
|
: a(_a), b(_b), target(t), invert(inv) {}
|
|
|
|
boost::math::tuple<T, T> operator()(const T& x)
|
|
{
|
|
typedef boost::math::lanczos::lanczos<T, Policy> S;
|
|
typedef typename S::type L;
|
|
T f = boost::math::detail::ibeta_imp(a, b, x, Policy(), invert, true) - target;
|
|
T f1 = invert ?
|
|
-boost::math::detail::ibeta_power_terms(b, a, 1 - x, x, L(), true, Policy())
|
|
: boost::math::detail::ibeta_power_terms(a, b, x, 1 - x, L(), true, Policy());
|
|
T y = 1 - x;
|
|
if (y == 0)
|
|
y = boost::math::tools::min_value<T>() * 8;
|
|
f1 /= y * x;
|
|
|
|
// make sure we don't have a zero derivative:
|
|
if (f1 == 0)
|
|
f1 = (invert ? -1 : 1) * boost::math::tools::min_value<T>() * 64;
|
|
|
|
return boost::math::make_tuple(f, f1);
|
|
}
|
|
private:
|
|
T a, b, target;
|
|
bool invert;
|
|
};
|
|
|
|
template <class T, class Policy>
|
|
struct ibeta_roots_3 // for third order algorithms
|
|
{
|
|
ibeta_roots_3(T _a, T _b, T t, bool inv = false)
|
|
: a(_a), b(_b), target(t), invert(inv) {}
|
|
|
|
boost::math::tuple<T, T, T> operator()(const T& x)
|
|
{
|
|
typedef typename boost::math::lanczos::lanczos<T, Policy>::type L;
|
|
T f = boost::math::detail::ibeta_imp(a, b, x, Policy(), invert, true) - target;
|
|
T f1 = invert ?
|
|
-boost::math::detail::ibeta_power_terms(b, a, 1 - x, x, L(), true, Policy())
|
|
: boost::math::detail::ibeta_power_terms(a, b, x, 1 - x, L(), true, Policy());
|
|
T y = 1 - x;
|
|
if (y == 0)
|
|
y = boost::math::tools::min_value<T>() * 8;
|
|
f1 /= y * x;
|
|
T f2 = f1 * (-y * a + (b - 2) * x + 1) / (y * x);
|
|
if (invert)
|
|
f2 = -f2;
|
|
|
|
// make sure we don't have a zero derivative:
|
|
if (f1 == 0)
|
|
f1 = (invert ? -1 : 1) * boost::math::tools::min_value<T>() * 64;
|
|
|
|
return boost::math::make_tuple(f, f1, f2);
|
|
}
|
|
private:
|
|
T a, b, target;
|
|
bool invert;
|
|
};
|
|
|
|
|
|
BOOST_AUTO_TEST_CASE( test_main )
|
|
{
|
|
int newton_limits = static_cast<int>(std::numeric_limits<double>::digits * 0.6);
|
|
|
|
double arg = 1e-50;
|
|
boost::uintmax_t iters;
|
|
double guess;
|
|
double dr;
|
|
|
|
while(arg < 1e50)
|
|
{
|
|
double result = boost::math::cbrt(arg);
|
|
//
|
|
// Start with a really bad guess 5 times below the result:
|
|
//
|
|
guess = result / 5;
|
|
iters = 1000;
|
|
// TOMS algo first:
|
|
std::pair<double, double> r = boost::math::tools::bracket_and_solve_root(cbrt_functor_noderiv(arg), guess, 2.0, true, boost::math::tools::eps_tolerance<double>(), iters);
|
|
BOOST_CHECK_CLOSE_FRACTION((r.first + r.second) / 2, result, std::numeric_limits<double>::epsilon() * 4);
|
|
BOOST_CHECK_LE(iters, 14);
|
|
// Newton next:
|
|
iters = 1000;
|
|
dr = boost::math::tools::newton_raphson_iterate(cbrt_functor_deriv(arg), guess, guess / 2, result * 10, newton_limits, iters);
|
|
BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
|
|
BOOST_CHECK_LE(iters, 12);
|
|
// Halley next:
|
|
iters = 1000;
|
|
dr = boost::math::tools::halley_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
|
|
BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
|
|
BOOST_CHECK_LE(iters, 7);
|
|
// Schroder next:
|
|
iters = 1000;
|
|
dr = boost::math::tools::schroder_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
|
|
BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
|
|
BOOST_CHECK_LE(iters, 11);
|
|
//
|
|
// Over again with a bad guess 5 times larger than the result:
|
|
//
|
|
iters = 1000;
|
|
guess = result * 5;
|
|
r = boost::math::tools::bracket_and_solve_root(cbrt_functor_noderiv(arg), guess, 2.0, true, boost::math::tools::eps_tolerance<double>(), iters);
|
|
BOOST_CHECK_CLOSE_FRACTION((r.first + r.second) / 2, result, std::numeric_limits<double>::epsilon() * 4);
|
|
BOOST_CHECK_LE(iters, 14);
|
|
// Newton next:
|
|
iters = 1000;
|
|
dr = boost::math::tools::newton_raphson_iterate(cbrt_functor_deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
|
|
BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
|
|
BOOST_CHECK_LE(iters, 12);
|
|
// Halley next:
|
|
iters = 1000;
|
|
dr = boost::math::tools::halley_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
|
|
BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
|
|
BOOST_CHECK_LE(iters, 7);
|
|
// Schroder next:
|
|
iters = 1000;
|
|
dr = boost::math::tools::schroder_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
|
|
BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
|
|
BOOST_CHECK_LE(iters, 11);
|
|
//
|
|
// A much better guess, 1% below result:
|
|
//
|
|
iters = 1000;
|
|
guess = result * 0.9;
|
|
r = boost::math::tools::bracket_and_solve_root(cbrt_functor_noderiv(arg), guess, 2.0, true, boost::math::tools::eps_tolerance<double>(), iters);
|
|
BOOST_CHECK_CLOSE_FRACTION((r.first + r.second) / 2, result, std::numeric_limits<double>::epsilon() * 4);
|
|
BOOST_CHECK_LE(iters, 12);
|
|
// Newton next:
|
|
iters = 1000;
|
|
dr = boost::math::tools::newton_raphson_iterate(cbrt_functor_deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
|
|
BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
|
|
BOOST_CHECK_LE(iters, 5);
|
|
// Halley next:
|
|
iters = 1000;
|
|
dr = boost::math::tools::halley_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
|
|
BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
|
|
BOOST_CHECK_LE(iters, 3);
|
|
// Schroder next:
|
|
iters = 1000;
|
|
dr = boost::math::tools::schroder_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
|
|
BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
|
|
BOOST_CHECK_LE(iters, 4);
|
|
//
|
|
// A much better guess, 1% above result:
|
|
//
|
|
iters = 1000;
|
|
guess = result * 1.1;
|
|
r = boost::math::tools::bracket_and_solve_root(cbrt_functor_noderiv(arg), guess, 2.0, true, boost::math::tools::eps_tolerance<double>(), iters);
|
|
BOOST_CHECK_CLOSE_FRACTION((r.first + r.second) / 2, result, std::numeric_limits<double>::epsilon() * 4);
|
|
BOOST_CHECK_LE(iters, 12);
|
|
// Newton next:
|
|
iters = 1000;
|
|
dr = boost::math::tools::newton_raphson_iterate(cbrt_functor_deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
|
|
BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
|
|
BOOST_CHECK_LE(iters, 5);
|
|
// Halley next:
|
|
iters = 1000;
|
|
dr = boost::math::tools::halley_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
|
|
BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
|
|
BOOST_CHECK_LE(iters, 3);
|
|
// Schroder next:
|
|
iters = 1000;
|
|
dr = boost::math::tools::schroder_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
|
|
BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
|
|
BOOST_CHECK_LE(iters, 4);
|
|
|
|
arg *= 3.5;
|
|
}
|
|
|
|
//
|
|
// Test ibeta as this triggers all the pathological cases!
|
|
//
|
|
#ifndef SC_
|
|
#define SC_(x) x
|
|
#endif
|
|
#define T double
|
|
|
|
# include "ibeta_small_data.ipp"
|
|
|
|
for (unsigned i = 0; i < ibeta_small_data.size(); ++i)
|
|
{
|
|
//
|
|
// These inverse tests are thrown off if the output of the
|
|
// incomplete beta is too close to 1: basically there is insuffient
|
|
// information left in the value we're using as input to the inverse
|
|
// to be able to get back to the original value.
|
|
//
|
|
if (ibeta_small_data[i][5] == 0)
|
|
{
|
|
iters = 1000;
|
|
dr = boost::math::tools::newton_raphson_iterate(ibeta_roots_2<double, boost::math::policies::policy<> >(ibeta_small_data[i][0], ibeta_small_data[i][1], ibeta_small_data[i][5]), 0.5, 0.0, 1.0, 53, iters);
|
|
BOOST_CHECK_EQUAL(dr, 0.0);
|
|
BOOST_CHECK_LE(iters, 27);
|
|
iters = 1000;
|
|
dr = boost::math::tools::halley_iterate(ibeta_roots_3<double, boost::math::policies::policy<> >(ibeta_small_data[i][0], ibeta_small_data[i][1], ibeta_small_data[i][5]), 0.5, 0.0, 1.0, 53, iters);
|
|
BOOST_CHECK_EQUAL(dr, 0.0);
|
|
BOOST_CHECK_LE(iters, 10);
|
|
}
|
|
else if ((1 - ibeta_small_data[i][5] > 0.001)
|
|
&& (fabs(ibeta_small_data[i][5]) > 2 * boost::math::tools::min_value<double>()))
|
|
{
|
|
iters = 1000;
|
|
double result = ibeta_small_data[i][2];
|
|
dr = boost::math::tools::newton_raphson_iterate(ibeta_roots_2<double, boost::math::policies::policy<> >(ibeta_small_data[i][0], ibeta_small_data[i][1], ibeta_small_data[i][5]), 0.5, 0.0, 1.0, 53, iters);
|
|
BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 200);
|
|
#if defined(BOOST_MSVC) && (BOOST_MSVC == 1600)
|
|
BOOST_CHECK_LE(iters, 40);
|
|
#else
|
|
BOOST_CHECK_LE(iters, 27);
|
|
#endif
|
|
iters = 1000;
|
|
result = ibeta_small_data[i][2];
|
|
dr = boost::math::tools::halley_iterate(ibeta_roots_3<double, boost::math::policies::policy<> >(ibeta_small_data[i][0], ibeta_small_data[i][1], ibeta_small_data[i][5]), 0.5, 0.0, 1.0, 53, iters);
|
|
BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 200);
|
|
#ifdef __PPC__
|
|
BOOST_CHECK_LE(iters, 55);
|
|
#else
|
|
BOOST_CHECK_LE(iters, 40);
|
|
#endif
|
|
}
|
|
else if (1 == ibeta_small_data[i][5])
|
|
{
|
|
iters = 1000;
|
|
dr = boost::math::tools::newton_raphson_iterate(ibeta_roots_2<double, boost::math::policies::policy<> >(ibeta_small_data[i][0], ibeta_small_data[i][1], ibeta_small_data[i][5]), 0.5, 0.0, 1.0, 53, iters);
|
|
BOOST_CHECK_EQUAL(dr, 1.0);
|
|
BOOST_CHECK_LE(iters, 27);
|
|
iters = 1000;
|
|
dr = boost::math::tools::halley_iterate(ibeta_roots_3<double, boost::math::policies::policy<> >(ibeta_small_data[i][0], ibeta_small_data[i][1], ibeta_small_data[i][5]), 0.5, 0.0, 1.0, 53, iters);
|
|
BOOST_CHECK_EQUAL(dr, 1.0);
|
|
BOOST_CHECK_LE(iters, 10);
|
|
}
|
|
}
|
|
|
|
}
|
|
|