2
0
mirror of https://github.com/boostorg/math.git synced 2026-01-24 06:02:08 +00:00
Files
math/test/test_root_finding_concepts.cpp
Nick 7c7b1cab02 Newton-Raphson instrumented message improvements (#552)
The Newton-Raphson method has an option to log convergence via `BOOST_MATH_INSTRUMENT`. However, too much information was give about some things which were not super helpful, and too little about residuals.

In addition, remove buffer flushes as they slow down the process dramatically.
2021-02-24 21:07:09 -05:00

227 lines
9.2 KiB
C++

// Copyright John Maddock 2014
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp> // Boost.Test
#include <boost/test/results_collector.hpp>
#include <boost/test/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/tuple/tuple.hpp>
#include <boost/fusion/include/tuple.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <boost/math/tools/toms748_solve.hpp>
#include <tuple>
#include <iostream>
#include <iomanip>
using std::cout;
using std::endl;
using std::setprecision;
#include <boost/math/tools/roots.hpp>
//
// We'll use cbrt as an example:
//
struct cbtr_functor_1
{
cbtr_functor_1(double x) : m_target(x) {}
double operator()(double x)
{
return x * x * x - m_target;
}
private:
double m_target;
};
struct cbtr_functor_2a
{
cbtr_functor_2a(double x) : m_target(x) {}
std::pair<double, double> operator()(double x)
{
return std::make_pair(x * x * x - m_target, 3 * x * x);
}
private:
double m_target;
};
struct cbtr_functor_2b
{
cbtr_functor_2b(double x) : m_target(x) {}
std::tuple<double, double> operator()(double x)
{
return std::tuple<double, double>(x * x * x - m_target, 3 * x * x);
}
private:
double m_target;
};
struct cbtr_functor_2c
{
cbtr_functor_2c(double x) : m_target(x) {}
boost::tuple<double, double> operator()(double x)
{
return boost::tuple<double, double>(x * x * x - m_target, 3 * x * x);
}
private:
double m_target;
};
struct cbtr_functor_2d
{
cbtr_functor_2d(double x) : m_target(x) {}
boost::fusion::tuple<double, double> operator()(double x)
{
return boost::fusion::tuple<double, double>(x * x * x - m_target, 3 * x * x);
}
private:
double m_target;
};
struct cbtr_functor_3b
{
cbtr_functor_3b(double x) : m_target(x) {}
std::tuple<double, double, double> operator()(double x)
{
return std::tuple<double, double, double>(x * x * x - m_target, 3 * x * x, 6 * x);
}
private:
double m_target;
};
struct cbtr_functor_3c
{
cbtr_functor_3c(double x) : m_target(x) {}
boost::tuple<double, double, double> operator()(double x)
{
return boost::tuple<double, double, double>(x * x * x - m_target, 3 * x * x, 6 * x);
}
private:
double m_target;
};
struct cbtr_functor_3d
{
cbtr_functor_3d(double x) : m_target(x) {}
boost::fusion::tuple<double, double, double> operator()(double x)
{
return boost::fusion::tuple<double, double, double>(x * x * x - m_target, 3 * x * x, 6 * x);
}
private:
double m_target;
};
BOOST_AUTO_TEST_CASE( test_main )
{
double x = 27;
double expected = 3;
double result;
double tolerance = std::numeric_limits<double>::epsilon() * 5;
std::pair<double, double> p;
//
// Start by trying the unary functors, bisect first:
//
cbtr_functor_1 f1(x);
boost::math::tools::eps_tolerance<double> t(std::numeric_limits<double>::digits - 1);
p = boost::math::tools::bisect(f1, 0.0, x, t);
result = (p.first + p.second) / 2;
BOOST_CHECK_CLOSE_FRACTION(expected, result, tolerance);
//
// bracket_and_solve_root:
//
boost::uintmax_t max_iter = boost::math::policies::get_max_root_iterations<boost::math::policies::policy<> >();
p = boost::math::tools::bracket_and_solve_root(f1, x, 2.0, true, t, max_iter);
result = (p.first + p.second) / 2;
BOOST_CHECK_CLOSE_FRACTION(expected, result, tolerance);
//
// toms748_solve:
//
max_iter = boost::math::policies::get_max_root_iterations<boost::math::policies::policy<> >();
p = boost::math::tools::toms748_solve(f1, 0.0, x, t, max_iter);
result = (p.first + p.second) / 2;
BOOST_CHECK_CLOSE_FRACTION(expected, result, tolerance);
//
// Now try again with C++11 lambda's
//
p = boost::math::tools::bisect([x](double z){ return z * z * z - x; }, 0.0, x, t);
result = (p.first + p.second) / 2;
BOOST_CHECK_CLOSE_FRACTION(expected, result, tolerance);
//
// bracket_and_solve_root:
//
max_iter = boost::math::policies::get_max_root_iterations<boost::math::policies::policy<> >();
p = boost::math::tools::bracket_and_solve_root([x](double z){ return z * z * z - x; }, x, 2.0, true, t, max_iter);
result = (p.first + p.second) / 2;
BOOST_CHECK_CLOSE_FRACTION(expected, result, tolerance);
//
// toms748_solve:
//
max_iter = boost::math::policies::get_max_root_iterations<boost::math::policies::policy<> >();
p = boost::math::tools::toms748_solve([x](double z){ return z * z * z - x; }, 0.0, x, t, max_iter);
result = (p.first + p.second) / 2;
BOOST_CHECK_CLOSE_FRACTION(expected, result, tolerance);
cbtr_functor_2a f2(x);
cbtr_functor_2b f3(x);
cbtr_functor_2c f4(x);
cbtr_functor_2d f5(x);
//
// Binary Functors - newton_raphson_iterate - test each possible tuple type:
//
result = boost::math::tools::newton_raphson_iterate(f2, x, 0.0, x, std::numeric_limits<double>::digits - 1);
BOOST_CHECK_CLOSE_FRACTION(expected, result, tolerance);
result = boost::math::tools::newton_raphson_iterate(f3, x, 0.0, x, std::numeric_limits<double>::digits - 1);
BOOST_CHECK_CLOSE_FRACTION(expected, result, tolerance);
result = boost::math::tools::newton_raphson_iterate(f4, x, 0.0, x, std::numeric_limits<double>::digits - 1);
BOOST_CHECK_CLOSE_FRACTION(expected, result, tolerance);
result = boost::math::tools::newton_raphson_iterate(f5, x, 0.0, x, std::numeric_limits<double>::digits - 1);
BOOST_CHECK_CLOSE_FRACTION(expected, result, tolerance);
//
// And again but with lambdas:
//
result = boost::math::tools::newton_raphson_iterate([x](double z){ return std::make_pair(z * z * z - x, 3 * z * z); }, x, 0.0, x, std::numeric_limits<double>::digits - 1);
BOOST_CHECK_CLOSE_FRACTION(expected, result, tolerance);
result = boost::math::tools::newton_raphson_iterate([x](double z){ return std::make_tuple(z * z * z - x, 3 * z * z); }, x, 0.0, x, std::numeric_limits<double>::digits - 1);
BOOST_CHECK_CLOSE_FRACTION(expected, result, tolerance);
result = boost::math::tools::newton_raphson_iterate([x](double z){ return boost::tuple<double, double>(z * z * z - x, 3 * z * z); }, x, 0.0, x, std::numeric_limits<double>::digits - 1);
BOOST_CHECK_CLOSE_FRACTION(expected, result, tolerance);
result = boost::math::tools::newton_raphson_iterate([x](double z){ return boost::fusion::tuple<double, double>(z * z * z - x, 3 * z * z); }, x, 0.0, x, std::numeric_limits<double>::digits - 1);
BOOST_CHECK_CLOSE_FRACTION(expected, result, tolerance);
cbtr_functor_3b f6(x);
cbtr_functor_3c f7(x);
cbtr_functor_3d f8(x);
//
// Ternary functors:
//
result = boost::math::tools::halley_iterate(f6, x, 0.0, x, std::numeric_limits<double>::digits - 1);
BOOST_CHECK_CLOSE_FRACTION(expected, result, tolerance);
result = boost::math::tools::halley_iterate(f7, x, 0.0, x, std::numeric_limits<double>::digits - 1);
BOOST_CHECK_CLOSE_FRACTION(expected, result, tolerance);
result = boost::math::tools::halley_iterate(f8, x, 0.0, x, std::numeric_limits<double>::digits - 1);
BOOST_CHECK_CLOSE_FRACTION(expected, result, tolerance);
result = boost::math::tools::halley_iterate([x](double z){ return std::make_tuple(z * z * z - x, 3 * z * z, 6 * z); }, x, 0.0, x, std::numeric_limits<double>::digits - 1);
BOOST_CHECK_CLOSE_FRACTION(expected, result, tolerance);
result = boost::math::tools::halley_iterate([x](double z){ return boost::tuple<double, double, double>(z * z * z - x, 3 * z * z, 6 * z); }, x, 0.0, x, std::numeric_limits<double>::digits - 1);
BOOST_CHECK_CLOSE_FRACTION(expected, result, tolerance);
result = boost::math::tools::halley_iterate([x](double z){ return boost::fusion::tuple<double, double, double>(z * z * z - x, 3 * z * z, 6 * z); }, x, 0.0, x, std::numeric_limits<double>::digits - 1);
BOOST_CHECK_CLOSE_FRACTION(expected, result, tolerance);
result = boost::math::tools::schroder_iterate(f6, x, 0.0, x, std::numeric_limits<double>::digits - 1);
BOOST_CHECK_CLOSE_FRACTION(expected, result, tolerance);
result = boost::math::tools::schroder_iterate(f7, x, 0.0, x, std::numeric_limits<double>::digits - 1);
BOOST_CHECK_CLOSE_FRACTION(expected, result, tolerance);
result = boost::math::tools::schroder_iterate(f8, x, 0.0, x, std::numeric_limits<double>::digits - 1);
BOOST_CHECK_CLOSE_FRACTION(expected, result, tolerance);
result = boost::math::tools::schroder_iterate([x](double z){ return std::make_tuple(z * z * z - x, 3 * z * z, 6 * z); }, x, 0.0, x, std::numeric_limits<double>::digits - 1);
BOOST_CHECK_CLOSE_FRACTION(expected, result, tolerance);
result = boost::math::tools::schroder_iterate([x](double z){ return boost::tuple<double, double, double>(z * z * z - x, 3 * z * z, 6 * z); }, x, 0.0, x, std::numeric_limits<double>::digits - 1);
BOOST_CHECK_CLOSE_FRACTION(expected, result, tolerance);
result = boost::math::tools::schroder_iterate([x](double z){ return boost::fusion::tuple<double, double, double>(z * z * z - x, 3 * z * z, 6 * z); }, x, 0.0, x, std::numeric_limits<double>::digits - 1);
BOOST_CHECK_CLOSE_FRACTION(expected, result, tolerance);
} // BOOST_AUTO_TEST_CASE( test_main )