mirror of
https://github.com/boostorg/math.git
synced 2026-02-21 15:12:28 +00:00
585 lines
21 KiB
C++
585 lines
21 KiB
C++
#include <iostream>
|
|
#include <unordered_map>
|
|
#include <string>
|
|
#include <future>
|
|
#include <thread>
|
|
#include <fstream>
|
|
#include <boost/math/special_functions/daubechies_scaling.hpp>
|
|
#include <boost/math/special_functions/detail/daubechies_scaling_integer_grid.hpp>
|
|
#include <boost/math/interpolators/cubic_hermite.hpp>
|
|
#include <boost/math/interpolators/cardinal_cubic_hermite.hpp>
|
|
#include <boost/math/interpolators/quintic_hermite.hpp>
|
|
#include <boost/math/interpolators/cardinal_quintic_hermite.hpp>
|
|
#include <boost/math/interpolators/septic_hermite.hpp>
|
|
#include <boost/math/interpolators/cardinal_quadratic_b_spline.hpp>
|
|
#include <boost/math/interpolators/cardinal_cubic_b_spline.hpp>
|
|
#include <boost/math/interpolators/cardinal_quintic_b_spline.hpp>
|
|
#include <boost/math/interpolators/whittaker_shannon.hpp>
|
|
#include <boost/math/interpolators/cardinal_trigonometric.hpp>
|
|
#include <boost/math/special_functions/next.hpp>
|
|
#include <boost/math/interpolators/makima.hpp>
|
|
#include <boost/math/interpolators/pchip.hpp>
|
|
#include <boost/multiprecision/float128.hpp>
|
|
#include <boost/core/demangle.hpp>
|
|
//#include <quicksvg/graph_fn.hpp>
|
|
//#include <quicksvg/ulp_plot.hpp>
|
|
|
|
using boost::multiprecision::float128;
|
|
|
|
|
|
template<typename Real, typename PreciseReal, int p>
|
|
void choose_refinement()
|
|
{
|
|
std::cout << "Choosing refinement for " << boost::core::demangle(typeid(Real).name()) << " precision Daubechies scaling function with " << p << " vanishing moments.\n";
|
|
using std::abs;
|
|
int rmax = 21;
|
|
auto phi_dense = boost::math::detail::dyadic_grid<PreciseReal, p, 0>(rmax);
|
|
Real dx_dense = (2*p-1)/static_cast<Real>(phi_dense.size()-1);
|
|
|
|
for (int r = 2; r <= rmax - 2; ++r)
|
|
{
|
|
auto phi_accurate = boost::math::detail::dyadic_grid<PreciseReal, p, 0>(r);
|
|
std::vector<Real> phi(phi_accurate.size());
|
|
for (size_t i = 0; i < phi_accurate.size(); ++i)
|
|
{
|
|
phi[i] = Real(phi_accurate[i]);
|
|
}
|
|
auto phi_prime_accurate = boost::math::detail::dyadic_grid<PreciseReal, p, 1>(r);
|
|
std::vector<Real> phi_prime(phi_accurate.size());
|
|
for (size_t i = 0; i < phi_prime_accurate.size(); ++i)
|
|
{
|
|
phi_prime[i] = Real(phi_prime_accurate[i]);
|
|
}
|
|
|
|
Real dx = (2*p-1)/static_cast<Real>(phi.size()-1);
|
|
std::cout << "\tdx = 1/" << (1/dx) << " = " << dx << "\n";
|
|
|
|
if constexpr (p < 6 && p >= 3)
|
|
{
|
|
auto ch = boost::math::interpolators::cardinal_cubic_hermite(std::move(phi), std::move(phi_prime), Real(0), Real(dx));
|
|
Real flt_distance = 0;
|
|
Real sup = 0;
|
|
Real worst_abscissa = 0;
|
|
Real worst_value = 0;
|
|
Real worst_computed = 0;
|
|
for (size_t i = 0; i < phi_dense.size(); ++i)
|
|
{
|
|
Real t = i*dx_dense;
|
|
Real computed = ch(t);
|
|
Real expected = Real(phi_dense[i]);
|
|
if (std::abs(expected) < 100*std::numeric_limits<Real>::epsilon())
|
|
{
|
|
continue;
|
|
}
|
|
Real diff = abs(computed - expected);
|
|
Real distance = abs(boost::math::float_distance(computed, expected));
|
|
if (distance > flt_distance)
|
|
{
|
|
flt_distance = distance;
|
|
worst_abscissa = t;
|
|
worst_value = expected;
|
|
worst_computed = computed;
|
|
}
|
|
if (diff > sup)
|
|
{
|
|
sup = diff;
|
|
}
|
|
}
|
|
std::cout << "\t\tFloat distance at r = " << r << " is " << flt_distance << ", sup distance = " << sup << "\n";
|
|
std::cout << "\t\tWorst abscissa = " << worst_abscissa << ", worst value = " << worst_value << ", computed = " << worst_computed << "\n";
|
|
}
|
|
else if constexpr (p >= 6)
|
|
{
|
|
auto phi_dbl_prime = boost::math::detail::dyadic_grid<Real, p, 2>(r);
|
|
auto qh = boost::math::interpolators::cardinal_quintic_hermite(std::move(phi), std::move(phi_prime), std::move(phi_dbl_prime), Real(0), dx);
|
|
Real flt_distance = 0;
|
|
Real sup = 0;
|
|
Real worst_abscissa = 0;
|
|
Real worst_value = 0;
|
|
Real worst_computed = 0;
|
|
for (size_t i = 0; i < phi_dense.size(); ++i)
|
|
{
|
|
Real t = i*dx_dense;
|
|
Real computed = qh(t);
|
|
Real expected = Real(phi_dense[i]);
|
|
if (std::abs(expected) < 100*std::numeric_limits<Real>::epsilon())
|
|
{
|
|
continue;
|
|
}
|
|
|
|
Real diff = abs(computed - expected);
|
|
Real distance = abs(boost::math::float_distance(computed, expected));
|
|
if (distance > flt_distance)
|
|
{
|
|
flt_distance = distance;
|
|
worst_abscissa = t;
|
|
worst_value = expected;
|
|
worst_computed = computed;
|
|
}
|
|
if (diff > sup)
|
|
{
|
|
sup = diff;
|
|
}
|
|
std::cout << "Float distance at r = " << r << " is " << flt_distance << ", sup distance = " << sup << "\n";
|
|
std::cout << "\tWorst abscissa = " << worst_abscissa << ", worst value = " << worst_value << ", computed = " << worst_computed << "\n";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename Real, typename PreciseReal, int p>
|
|
void find_best_interpolator()
|
|
{
|
|
std::string filename = "daubechies_" + std::to_string(p) + "_scaling_convergence.csv";
|
|
std::ofstream fs{filename};
|
|
static_assert(sizeof(PreciseReal) >= sizeof(Real), "sizeof(PreciseReal) >= sizeof(Real) is required.");
|
|
using std::abs;
|
|
int rmax = 21;
|
|
auto phi_dense_precise = boost::math::detail::dyadic_grid<PreciseReal, p, 0>(rmax);
|
|
std::vector<Real> phi_dense(phi_dense_precise.size());
|
|
for (size_t i = 0; i < phi_dense.size(); ++i)
|
|
{
|
|
phi_dense[i] = static_cast<Real>(phi_dense_precise[i]);
|
|
}
|
|
phi_dense_precise.resize(0);
|
|
|
|
Real dx_dense = (2*p-1)/static_cast<Real>(phi_dense.size()-1);
|
|
fs << std::setprecision(std::numeric_limits<Real>::digits10 + 3);
|
|
fs << std::fixed;
|
|
fs << "r, matched_holder, linear, quadratic_b_spline, cubic_b_spline, quintic_b_spline, cubic_hermite, pchip, makima, fo_taylor";
|
|
if (p==2) {
|
|
fs << "\n";
|
|
}
|
|
else {
|
|
fs << ", quintic_hermite, second_order_taylor";
|
|
if (p > 3)
|
|
{
|
|
fs << ", third_order_taylor, septic_hermite\n";
|
|
}
|
|
else {
|
|
fs << "\n";
|
|
}
|
|
}
|
|
for (int r = 2; r < rmax-1; ++r)
|
|
{
|
|
fs << r << ", ";
|
|
std::map<Real, std::string> m;
|
|
auto phi = boost::math::detail::dyadic_grid<Real, p, 0>(r);
|
|
auto phi_prime = boost::math::detail::dyadic_grid<Real, p, 1>(r);
|
|
|
|
std::vector<Real> x(phi.size());
|
|
Real dx = (2*p-1)/static_cast<Real>(x.size()-1);
|
|
std::cout << "dx = 1/" << (1 << r) << " = " << dx << "\n";
|
|
for (size_t i = 0; i < x.size(); ++i)
|
|
{
|
|
x[i] = i*dx;
|
|
}
|
|
|
|
{
|
|
auto phi_copy = phi;
|
|
auto phi_prime_copy = phi_prime;
|
|
auto mh = boost::math::detail::matched_holder(std::move(phi_copy), std::move(phi_prime_copy), r);
|
|
Real sup = 0;
|
|
// call to matched_holder is unchecked:
|
|
for (size_t i = 0; i < phi_dense.size() - 1; ++i)
|
|
{
|
|
Real x = i*dx_dense;
|
|
Real diff = abs(phi_dense[i] - mh(x));
|
|
if (diff > sup)
|
|
{
|
|
sup = diff;
|
|
}
|
|
}
|
|
m.insert({sup, "matched_holder"});
|
|
fs << sup << ", ";
|
|
}
|
|
|
|
|
|
{
|
|
auto linear = [&phi, &dx, &r](Real x)->Real {
|
|
if (x <= 0 || x >= 2*p-1)
|
|
{
|
|
return Real(0);
|
|
}
|
|
using std::floor;
|
|
|
|
Real y = (1<<r)*x;
|
|
Real k = floor(y);
|
|
|
|
size_t kk = static_cast<size_t>(k);
|
|
|
|
Real t = y - k;
|
|
return (1-t)*phi[kk] + t*phi[kk+1];
|
|
};
|
|
|
|
Real linear_sup = 0;
|
|
for (size_t i = 0; i < phi_dense.size(); ++i)
|
|
{
|
|
Real x = i*dx_dense;
|
|
Real diff = abs(phi_dense[i] - linear(x));
|
|
if (diff > linear_sup)
|
|
{
|
|
linear_sup = diff;
|
|
}
|
|
}
|
|
m.insert({linear_sup, "linear interpolation"});
|
|
fs << linear_sup << ", ";
|
|
}
|
|
|
|
|
|
{
|
|
auto qbs = boost::math::interpolators::cardinal_quadratic_b_spline(phi.data(), phi.size(), Real(0), dx, phi_prime.front(), phi_prime.back());
|
|
Real qbs_sup = 0;
|
|
for (size_t i = 0; i < phi_dense.size(); ++i)
|
|
{
|
|
Real x = i*dx_dense;
|
|
Real diff = abs(phi_dense[i] - qbs(x));
|
|
if (diff > qbs_sup) {
|
|
qbs_sup = diff;
|
|
}
|
|
}
|
|
m.insert({qbs_sup, "quadratic_b_spline"});
|
|
fs << qbs_sup << ", ";
|
|
}
|
|
|
|
{
|
|
auto cbs = boost::math::interpolators::cardinal_cubic_b_spline(phi.data(), phi.size(), Real(0), dx, phi_prime.front(), phi_prime.back());
|
|
Real cbs_sup = 0;
|
|
for (size_t i = 0; i < phi_dense.size(); ++i)
|
|
{
|
|
Real x = i*dx_dense;
|
|
Real diff = abs(phi_dense[i] - cbs(x));
|
|
if (diff > cbs_sup)
|
|
{
|
|
cbs_sup = diff;
|
|
}
|
|
}
|
|
m.insert({cbs_sup, "cubic_b_spline"});
|
|
fs << cbs_sup << ", ";
|
|
}
|
|
|
|
{
|
|
auto qbs = boost::math::interpolators::cardinal_quintic_b_spline(phi.data(), phi.size(), Real(0), dx, {0,0}, {0,0});
|
|
Real qbs_sup = 0;
|
|
for (size_t i = 0; i < phi_dense.size(); ++i)
|
|
{
|
|
Real x = i*dx_dense;
|
|
Real diff = abs(phi_dense[i] - qbs(x));
|
|
if (diff > qbs_sup)
|
|
{
|
|
qbs_sup = diff;
|
|
}
|
|
}
|
|
m.insert({qbs_sup, "quintic_b_spline"});
|
|
fs << qbs_sup << ", ";
|
|
}
|
|
|
|
{
|
|
auto phi_copy = phi;
|
|
auto phi_prime_copy = phi_prime;
|
|
auto ch = boost::math::interpolators::cardinal_cubic_hermite(std::move(phi_copy), std::move(phi_prime_copy), Real(0), dx);
|
|
Real chs_sup = 0;
|
|
for (size_t i = 0; i < phi_dense.size(); ++i)
|
|
{
|
|
Real x = i*dx_dense;
|
|
Real diff = abs(phi_dense[i] - ch(x));
|
|
if (diff > chs_sup)
|
|
{
|
|
chs_sup = diff;
|
|
}
|
|
}
|
|
m.insert({chs_sup, "cubic_hermite_spline"});
|
|
fs << chs_sup << ", ";
|
|
}
|
|
|
|
{
|
|
auto phi_copy = phi;
|
|
auto x_copy = x;
|
|
auto phi_prime_copy = phi_prime;
|
|
auto pc = boost::math::interpolators::pchip(std::move(x_copy), std::move(phi_copy));
|
|
Real pchip_sup = 0;
|
|
for (size_t i = 0; i < phi_dense.size(); ++i)
|
|
{
|
|
Real x = i*dx_dense;
|
|
Real diff = abs(phi_dense[i] - pc(x));
|
|
if (diff > pchip_sup)
|
|
{
|
|
pchip_sup = diff;
|
|
}
|
|
}
|
|
m.insert({pchip_sup, "pchip"});
|
|
fs << pchip_sup << ", ";
|
|
}
|
|
|
|
{
|
|
auto phi_copy = phi;
|
|
auto x_copy = x;
|
|
auto pc = boost::math::interpolators::makima(std::move(x_copy), std::move(phi_copy));
|
|
Real makima_sup = 0;
|
|
for (size_t i = 0; i < phi_dense.size(); ++i) {
|
|
Real x = i*dx_dense;
|
|
Real diff = abs(phi_dense[i] - pc(x));
|
|
if (diff > makima_sup)
|
|
{
|
|
makima_sup = diff;
|
|
}
|
|
}
|
|
m.insert({makima_sup, "makima"});
|
|
fs << makima_sup << ", ";
|
|
}
|
|
|
|
// Whittaker-Shannon interpolation has linear complexity; test over all points and it's quadratic.
|
|
// I ran this a couple times and found it's not competitive; so comment out for now.
|
|
/*{
|
|
auto phi_copy = phi;
|
|
auto ws = boost::math::interpolators::whittaker_shannon(std::move(phi_copy), Real(0), dx);
|
|
Real sup = 0;
|
|
for (size_t i = 0; i < phi_dense.size(); ++i) {
|
|
Real x = i*dx_dense;
|
|
using std::abs;
|
|
Real diff = abs(phi_dense[i] - ws(x));
|
|
if (diff > sup) {
|
|
sup = diff;
|
|
}
|
|
}
|
|
|
|
m.insert({sup, "whittaker_shannon"});
|
|
}
|
|
|
|
// Again, linear complexity of evaluation => quadratic complexity of exhaustive checking.
|
|
{
|
|
auto trig = boost::math::interpolators::cardinal_trigonometric(phi, Real(0), dx);
|
|
Real sup = 0;
|
|
for (size_t i = 0; i < phi_dense.size(); ++i) {
|
|
Real x = i*dx_dense;
|
|
using std::abs;
|
|
Real diff = abs(phi_dense[i] - trig(x));
|
|
if (diff > sup) {
|
|
sup = diff;
|
|
}
|
|
}
|
|
m.insert({sup, "trig"});
|
|
}*/
|
|
|
|
{
|
|
auto fotaylor = [&phi, &phi_prime, &r](Real x)->Real
|
|
{
|
|
if (x <= 0 || x >= 2*p-1)
|
|
{
|
|
return 0;
|
|
}
|
|
using std::floor;
|
|
|
|
Real y = (1<<r)*x;
|
|
Real k = floor(y);
|
|
|
|
size_t kk = static_cast<size_t>(k);
|
|
if (y - k < k + 1 - y)
|
|
{
|
|
Real eps = (y-k)/(1<<r);
|
|
return phi[kk] + eps*phi_prime[kk];
|
|
}
|
|
else {
|
|
Real eps = (y-k-1)/(1<<r);
|
|
return phi[kk+1] + eps*phi_prime[kk+1];
|
|
}
|
|
};
|
|
Real fo_sup = 0;
|
|
for (size_t i = 0; i < phi_dense.size(); ++i)
|
|
{
|
|
Real x = i*dx_dense;
|
|
Real diff = abs(phi_dense[i] - fotaylor(x));
|
|
if (diff > fo_sup)
|
|
{
|
|
fo_sup = diff;
|
|
}
|
|
}
|
|
m.insert({fo_sup, "First-order Taylor"});
|
|
if (p==2) {
|
|
fs << fo_sup << "\n";
|
|
}
|
|
else {
|
|
fs << fo_sup << ", ";
|
|
}
|
|
}
|
|
|
|
if constexpr (p > 2) {
|
|
auto phi_dbl_prime = boost::math::detail::dyadic_grid<Real, p, 2>(r);
|
|
|
|
{
|
|
auto phi_copy = phi;
|
|
auto phi_prime_copy = phi_prime;
|
|
auto phi_dbl_prime_copy = phi_dbl_prime;
|
|
auto qh = boost::math::interpolators::cardinal_quintic_hermite(std::move(phi_copy), std::move(phi_prime_copy), std::move(phi_dbl_prime_copy), Real(0), dx);
|
|
Real qh_sup = 0;
|
|
for (size_t i = 0; i < phi_dense.size(); ++i)
|
|
{
|
|
Real x = i*dx_dense;
|
|
Real diff = abs(phi_dense[i] - qh(x));
|
|
if (diff > qh_sup)
|
|
{
|
|
qh_sup = diff;
|
|
}
|
|
}
|
|
m.insert({qh_sup, "quintic_hermite_spline"});
|
|
fs << qh_sup << ", ";
|
|
}
|
|
|
|
{
|
|
auto sotaylor = [&phi, &phi_prime, &phi_dbl_prime, &r](Real x)->Real {
|
|
if (x <= 0 || x >= 2*p-1)
|
|
{
|
|
return 0;
|
|
}
|
|
using std::floor;
|
|
|
|
Real y = (1<<r)*x;
|
|
Real k = floor(y);
|
|
|
|
size_t kk = static_cast<size_t>(k);
|
|
if (y - k < k + 1 - y)
|
|
{
|
|
Real eps = (y-k)/(1<<r);
|
|
return phi[kk] + eps*phi_prime[kk] + eps*eps*phi_dbl_prime[kk]/2;
|
|
}
|
|
else {
|
|
Real eps = (y-k-1)/(1<<r);
|
|
return phi[kk+1] + eps*phi_prime[kk+1] + eps*eps*phi_dbl_prime[kk+1]/2;
|
|
}
|
|
};
|
|
Real so_sup = 0;
|
|
for (size_t i = 0; i < phi_dense.size(); ++i)
|
|
{
|
|
Real x = i*dx_dense;
|
|
Real diff = abs(phi_dense[i] - sotaylor(x));
|
|
if (diff > so_sup)
|
|
{
|
|
so_sup = diff;
|
|
}
|
|
}
|
|
m.insert({so_sup, "Second-order Taylor"});
|
|
if (p > 3)
|
|
{
|
|
fs << so_sup << ", ";
|
|
}
|
|
else
|
|
{
|
|
fs << so_sup << "\n";
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
if constexpr (p > 3)
|
|
{
|
|
auto phi_dbl_prime = boost::math::detail::dyadic_grid<Real, p, 2>(r);
|
|
auto phi_triple_prime = boost::math::detail::dyadic_grid<Real, p, 3>(r);
|
|
|
|
{
|
|
auto totaylor = [&phi, &phi_prime, &phi_dbl_prime, &phi_triple_prime, &r](Real x)->Real {
|
|
if (x <= 0 || x >= 2*p-1) {
|
|
return 0;
|
|
}
|
|
using std::floor;
|
|
|
|
Real y = (1<<r)*x;
|
|
Real k = floor(y);
|
|
|
|
size_t kk = static_cast<size_t>(k);
|
|
if (y - k < k + 1 - y)
|
|
{
|
|
Real eps = (y-k)/(1<<r);
|
|
return phi[kk] + eps*phi_prime[kk] + eps*eps*phi_dbl_prime[kk]/2 + eps*eps*eps*phi_triple_prime[kk]/6;
|
|
}
|
|
else {
|
|
Real eps = (y-k-1)/(1<<r);
|
|
return phi[kk+1] + eps*phi_prime[kk+1] + eps*eps*phi_dbl_prime[kk+1]/2 + eps*eps*eps*phi_triple_prime[kk]/6;
|
|
}
|
|
};
|
|
Real to_sup = 0;
|
|
for (size_t i = 0; i < phi_dense.size(); ++i)
|
|
{
|
|
Real x = i*dx_dense;
|
|
Real diff = abs(phi_dense[i] - totaylor(x));
|
|
if (diff > to_sup)
|
|
{
|
|
to_sup = diff;
|
|
}
|
|
}
|
|
|
|
m.insert({to_sup, "Third-order Taylor"});
|
|
fs << to_sup << ", ";
|
|
}
|
|
|
|
{
|
|
auto phi_copy = phi;
|
|
auto phi_prime_copy = phi_prime;
|
|
auto phi_dbl_prime_copy = phi_dbl_prime;
|
|
auto phi_triple_prime_copy = phi_triple_prime;
|
|
auto sh = boost::math::interpolators::cardinal_septic_hermite(std::move(phi_copy), std::move(phi_prime_copy), std::move(phi_dbl_prime_copy), std::move(phi_triple_prime_copy), Real(0), dx);
|
|
Real septic_sup = 0;
|
|
for (size_t i = 0; i < phi_dense.size(); ++i)
|
|
{
|
|
Real x = i*dx_dense;
|
|
Real diff = abs(phi_dense[i] - sh(x));
|
|
if (diff > septic_sup)
|
|
{
|
|
septic_sup = diff;
|
|
}
|
|
}
|
|
m.insert({septic_sup, "septic_hermite_spline"});
|
|
fs << septic_sup << ", ";
|
|
}
|
|
|
|
|
|
}
|
|
std::string best = "none";
|
|
Real best_sup = 1000000000;
|
|
std::cout << std::setprecision(std::numeric_limits<Real>::digits10 + 3) << std::fixed;
|
|
for (auto & e : m)
|
|
{
|
|
std::cout << "\t" << e.first << " is error of " << e.second << "\n";
|
|
if (e.first < best_sup)
|
|
{
|
|
best = e.second;
|
|
best_sup = e.first;
|
|
}
|
|
}
|
|
std::cout << "\tThe best method for p = " << p << " is the " << best << "\n";
|
|
}
|
|
}
|
|
|
|
int main() {
|
|
//choose_refinement<float, double, 5>();
|
|
//choose_refinement<float, long double, 5>();
|
|
//choose_refinement<double, float128, 15>();
|
|
// Says linear interpolation is the best:
|
|
find_best_interpolator<double, float128, 2>();
|
|
// Says linear interpolation is the best:
|
|
find_best_interpolator<double, float128, 3>();
|
|
// Says cubic_hermite_spline is best:
|
|
find_best_interpolator<double, float128, 4>();
|
|
// Says cubic_hermite_spline is best:
|
|
find_best_interpolator<double, float128, 5>();
|
|
// Says quintic_hermite_spline is best:
|
|
find_best_interpolator<double, float128, 6>();
|
|
// Says quintic_hermite_spline is best:
|
|
find_best_interpolator<double, float128, 7>();
|
|
// Says quintic_hermite_spline is best:
|
|
find_best_interpolator<double, float128, 8>();
|
|
// Says quintic_hermite_spline is best:
|
|
find_best_interpolator<double, float128, 9>();
|
|
// Says septic_hermite_spline is best:
|
|
find_best_interpolator<double, float128, 10>();
|
|
// Says septic_hermite_spline is best:
|
|
find_best_interpolator<double, float128, 11>();
|
|
// Says septic_hermite_spline is best:
|
|
find_best_interpolator<double, float128, 12>();
|
|
// Says septic_hermite_spline is best:
|
|
find_best_interpolator<double, float128, 13>();
|
|
// Says septic_hermite_spline is best:
|
|
find_best_interpolator<double, float128, 14>();
|
|
// Says septic_hermite_spline is best:
|
|
find_best_interpolator<double, float128, 15>();
|
|
}
|