mirror of
https://github.com/boostorg/math.git
synced 2026-01-30 08:02:11 +00:00
145 lines
14 KiB
HTML
145 lines
14 KiB
HTML
<html>
|
|
<head>
|
|
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
|
|
<title>Fourier Integrals</title>
|
|
<link rel="stylesheet" href="../math.css" type="text/css">
|
|
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
|
|
<link rel="home" href="../index.html" title="Math Toolkit 2.9.0">
|
|
<link rel="up" href="../quadrature.html" title="Chapter 12. Quadrature and Differentiation">
|
|
<link rel="prev" href="double_exponential/de_refes.html" title="References">
|
|
<link rel="next" href="naive_monte_carlo.html" title="Naive Monte Carlo Integration">
|
|
</head>
|
|
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
|
|
<table cellpadding="2" width="100%"><tr>
|
|
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
|
|
<td align="center"><a href="../../../../../index.html">Home</a></td>
|
|
<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
|
|
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
|
|
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
|
|
<td align="center"><a href="../../../../../more/index.htm">More</a></td>
|
|
</tr></table>
|
|
<hr>
|
|
<div class="spirit-nav">
|
|
<a accesskey="p" href="double_exponential/de_refes.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quadrature.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="naive_monte_carlo.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
|
|
</div>
|
|
<div class="section">
|
|
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
|
|
<a name="math_toolkit.fourier_integrals"></a><a class="link" href="fourier_integrals.html" title="Fourier Integrals">Fourier Integrals</a>
|
|
</h2></div></div></div>
|
|
<h4>
|
|
<a name="math_toolkit.fourier_integrals.h0"></a>
|
|
<span class="phrase"><a name="math_toolkit.fourier_integrals.synopsis"></a></span><a class="link" href="fourier_integrals.html#math_toolkit.fourier_integrals.synopsis">Synopsis</a>
|
|
</h4>
|
|
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">quadrature</span><span class="special">/</span><span class="identifier">ooura_fourier_integrals</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
|
|
<span class="keyword">namespace</span> <span class="identifier">boost</span> <span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span> <span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">quadrature</span> <span class="special">{</span>
|
|
|
|
<span class="keyword">template</span><span class="special"><</span><span class="keyword">class</span> <span class="identifier">Real</span><span class="special">></span>
|
|
<span class="keyword">class</span> <span class="identifier">ooura_fourier_sin</span> <span class="special">{</span>
|
|
<span class="keyword">public</span><span class="special">:</span>
|
|
<span class="identifier">ooura_fourier_sin</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">Real</span> <span class="identifier">relative_error_tolerance</span> <span class="special">=</span> <span class="identifier">tools</span><span class="special">::</span><span class="identifier">root_epsilon</span><span class="special"><</span><span class="identifier">Real</span><span class="special">>(),</span> <span class="identifier">size_t</span> <span class="identifier">levels</span> <span class="special">=</span> <span class="keyword">sizeof</span><span class="special">(</span><span class="identifier">Real</span><span class="special">));</span>
|
|
|
|
<span class="keyword">template</span><span class="special"><</span><span class="keyword">class</span> <span class="identifier">F</span><span class="special">></span>
|
|
<span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special"><</span><span class="identifier">Real</span><span class="special">,</span> <span class="identifier">Real</span><span class="special">></span> <span class="identifier">integrate</span><span class="special">(</span><span class="identifier">F</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">f</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">omega</span><span class="special">);</span>
|
|
|
|
<span class="special">};</span>
|
|
|
|
|
|
<span class="keyword">template</span><span class="special"><</span><span class="keyword">class</span> <span class="identifier">Real</span><span class="special">></span>
|
|
<span class="keyword">class</span> <span class="identifier">ooura_fourier_cos</span> <span class="special">{</span>
|
|
<span class="keyword">public</span><span class="special">:</span>
|
|
<span class="identifier">ooura_fourier_cos</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">Real</span> <span class="identifier">relative_error_tolerance</span> <span class="special">=</span> <span class="identifier">tools</span><span class="special">::</span><span class="identifier">root_epsilon</span><span class="special"><</span><span class="identifier">Real</span><span class="special">>(),</span> <span class="identifier">size_t</span> <span class="identifier">levels</span> <span class="special">=</span> <span class="keyword">sizeof</span><span class="special">(</span><span class="identifier">Real</span><span class="special">))</span>
|
|
|
|
<span class="keyword">template</span><span class="special"><</span><span class="keyword">class</span> <span class="identifier">F</span><span class="special">></span>
|
|
<span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special"><</span><span class="identifier">Real</span><span class="special">,</span> <span class="identifier">Real</span><span class="special">></span> <span class="identifier">integrate</span><span class="special">(</span><span class="identifier">F</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">f</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">omega</span><span class="special">);</span>
|
|
<span class="special">};</span>
|
|
|
|
|
|
<span class="special">}}}</span>
|
|
</pre>
|
|
<p>
|
|
Ooura's method for Fourier integrals computes
|
|
</p>
|
|
<p>
|
|
∫<sub>0</sub><sup>∞</sup> f(t)sin(ω t) dt
|
|
</p>
|
|
<p>
|
|
and
|
|
</p>
|
|
<p>
|
|
∫<sub>0</sub><sup>∞</sup> f(t)cos(ω t) dt
|
|
</p>
|
|
<p>
|
|
by a double exponentially decaying transformation. These integrals arise when
|
|
computing continuous Fourier transform of odd and even functions, respectively.
|
|
Oscillatory integrals are known to cause trouble for standard quadrature methods,
|
|
so these routines are provided to cope with the most common oscillatory use
|
|
case.
|
|
</p>
|
|
<p>
|
|
The basic usage is shown below:
|
|
</p>
|
|
<pre class="programlisting"><span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">quadrature</span><span class="special">::</span><span class="identifier">ooura_fourier_sin</span><span class="special">;</span>
|
|
<span class="keyword">auto</span> <span class="identifier">integrator</span> <span class="special">=</span> <span class="identifier">ooura_fourier_sin</span><span class="special"><</span><span class="keyword">double</span><span class="special">>();</span>
|
|
<span class="keyword">auto</span> <span class="identifier">f</span> <span class="special">=</span> <span class="special">[](</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">)</span> <span class="special">{</span> <span class="keyword">return</span> <span class="number">1</span><span class="special">/</span><span class="identifier">x</span><span class="special">;</span> <span class="special">};</span>
|
|
<span class="keyword">double</span> <span class="identifier">omega</span> <span class="special">=</span> <span class="number">1</span><span class="special">;</span>
|
|
<span class="keyword">auto</span> <span class="special">[</span><span class="identifier">Is</span><span class="special">,</span> <span class="identifier">relative_error</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">integrator</span><span class="special">.</span><span class="identifier">integrate</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="identifier">omega</span><span class="special">);</span>
|
|
</pre>
|
|
<p>
|
|
The computed value should be π/2. Note that this integrator is more insistent
|
|
about examining the error estimate, than (say) tanh-sinh, which just returns
|
|
the value of the integral.
|
|
</p>
|
|
<p>
|
|
A classical cosine transform is presented below:
|
|
</p>
|
|
<pre class="programlisting"><span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">quadrature</span><span class="special">::</span><span class="identifier">ooura_fourier_cos</span><span class="special">;</span>
|
|
<span class="keyword">auto</span> <span class="identifier">integrator</span> <span class="special">=</span> <span class="identifier">ooura_fourier_cos</span><span class="special"><</span><span class="keyword">double</span><span class="special">>();</span>
|
|
<span class="keyword">auto</span> <span class="identifier">f</span> <span class="special">=</span> <span class="special">[](</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">)</span> <span class="special">{</span> <span class="keyword">return</span> <span class="number">1</span><span class="special">/(</span><span class="identifier">x</span><span class="special">*</span><span class="identifier">x</span><span class="special">+</span><span class="number">1</span><span class="special">);</span> <span class="special">};</span>
|
|
<span class="keyword">double</span> <span class="identifier">omega</span> <span class="special">=</span> <span class="number">1</span><span class="special">;</span>
|
|
<span class="keyword">auto</span> <span class="special">[</span><span class="identifier">Ic</span><span class="special">,</span> <span class="identifier">relative_error</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">integrator</span><span class="special">.</span><span class="identifier">integrate</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="identifier">omega</span><span class="special">);</span>
|
|
</pre>
|
|
<p>
|
|
The value of <code class="computeroutput"><span class="identifier">Ic</span></code> should be π/2e.
|
|
</p>
|
|
<p>
|
|
The integrator precomputes nodes and weights, and hence can be reused for many
|
|
different frequencies with good efficiency. The integrator is pimpl'd and hence
|
|
can be shared between threads without a memcpy of the nodes and weights.
|
|
</p>
|
|
<p>
|
|
Ooura and Mori's paper identifies criteria for rapid convergence based on the
|
|
position of the poles of the integrand in the complex plane. If these poles
|
|
are too close to the real axis the convergence is slow. It is not trivial to
|
|
predict the convergence rate a priori, so if you are interested in figuring
|
|
out if the convergence is rapid compile with <code class="computeroutput"><span class="special">-</span><span class="identifier">DBOOST_MATH_INSTRUMENT_OOURA</span></code> and some amount
|
|
of printing will give you a good idea of how well this method is performing.
|
|
</p>
|
|
<h4>
|
|
<a name="math_toolkit.fourier_integrals.h1"></a>
|
|
<span class="phrase"><a name="math_toolkit.fourier_integrals.references"></a></span><a class="link" href="fourier_integrals.html#math_toolkit.fourier_integrals.references">References</a>
|
|
</h4>
|
|
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem">
|
|
Ooura, Takuya, and Masatake Mori, <span class="emphasis"><em>A robust double exponential
|
|
formula for Fourier-type integrals.</em></span> Journal of computational
|
|
and applied mathematics 112.1-2 (1999): 229-241.
|
|
</li></ul></div>
|
|
</div>
|
|
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
|
|
<td align="left"></td>
|
|
<td align="right"><div class="copyright-footer">Copyright © 2006-2010, 2012-2014, 2017 Nikhar
|
|
Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
|
|
Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
|
|
Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
|
|
Daryle Walker and Xiaogang Zhang<p>
|
|
Distributed under the Boost Software License, Version 1.0. (See accompanying
|
|
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
|
|
</p>
|
|
</div></td>
|
|
</tr></table>
|
|
<hr>
|
|
<div class="spirit-nav">
|
|
<a accesskey="p" href="double_exponential/de_refes.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quadrature.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="naive_monte_carlo.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
|
|
</div>
|
|
</body>
|
|
</html>
|