2
0
mirror of https://github.com/boostorg/math.git synced 2026-01-19 16:32:10 +00:00
Files
math/reporting/performance/cohen_acceleration_performance.cpp
Nick cbd2af2890 Cohen acceleration (#415)
* Cohen acceleration

Accelerates convergence of an alternating series by a method designed by Cohen, Villegas, and Zagier.
2020-08-09 09:55:56 -04:00

118 lines
3.9 KiB
C++

// (C) Copyright Nick Thompson 2020.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <random>
#include <iostream>
#include <iomanip>
#include <benchmark/benchmark.h>
#include <boost/math/tools/cohen_acceleration.hpp>
#include <boost/multiprecision/float128.hpp>
#include <boost/multiprecision/mpfr.hpp>
#include <boost/multiprecision/cpp_bin_float.hpp>
#include <boost/core/demangle.hpp>
using boost::multiprecision::number;
using boost::multiprecision::mpfr_float_backend;
using boost::multiprecision::float128;
using boost::multiprecision::cpp_bin_float_50;
using boost::multiprecision::cpp_bin_float_100;
using boost::math::tools::cohen_acceleration;
using boost::math::constants::pi;
template<typename Real>
class G {
public:
G(){
k_ = 0;
}
Real operator()() {
k_ += 1;
return 1/(k_*k_);
}
private:
Real k_;
};
template<class Real>
void CohenAcceleration(benchmark::State& state)
{
using std::abs;
Real x = pi<Real>()*pi<Real>()/12;
for (auto _ : state)
{
auto g = G<Real>();
x = cohen_acceleration(g);
benchmark::DoNotOptimize(x);
}
if (abs(x - pi<Real>()*pi<Real>()/12) > 16*std::numeric_limits<Real>::epsilon())
{
std::cerr << std::setprecision(std::numeric_limits<Real>::max_digits10);
std::cerr << "Cohen acceleration computed " << x << " on type " << boost::core::demangle(typeid(Real).name()) << "\n";
std::cerr << "But expected value is " << pi<Real>()*pi<Real>()/12 << "\n";
}
}
BENCHMARK_TEMPLATE(CohenAcceleration, float);
BENCHMARK_TEMPLATE(CohenAcceleration, double);
BENCHMARK_TEMPLATE(CohenAcceleration, long double);
BENCHMARK_TEMPLATE(CohenAcceleration, float128);
BENCHMARK_TEMPLATE(CohenAcceleration, cpp_bin_float_50);
BENCHMARK_TEMPLATE(CohenAcceleration, cpp_bin_float_100);
BENCHMARK_TEMPLATE(CohenAcceleration, number<mpfr_float_backend<100>>);
BENCHMARK_TEMPLATE(CohenAcceleration, number<mpfr_float_backend<200>>);
BENCHMARK_TEMPLATE(CohenAcceleration, number<mpfr_float_backend<300>>);
BENCHMARK_TEMPLATE(CohenAcceleration, number<mpfr_float_backend<400>>);
BENCHMARK_TEMPLATE(CohenAcceleration, number<mpfr_float_backend<1000>>);
template<class Real>
void NaiveSum(benchmark::State& state)
{
using std::abs;
Real x = pi<Real>()*pi<Real>()/12;
for (auto _ : state)
{
auto g = G<Real>();
Real term = g();
x = term;
bool even = false;
while (term > std::numeric_limits<Real>::epsilon()/2) {
term = g();
if (even) {
x += term;
even = false;
} else {
x -= term;
even = true;
}
}
benchmark::DoNotOptimize(x);
}
// The accuracy tests don't pass because the sum is ill-conditioned:
/*if (abs(x - pi<Real>()*pi<Real>()/12) > 16*std::numeric_limits<Real>::epsilon())
{
std::cerr << std::setprecision(std::numeric_limits<Real>::max_digits10);
std::cerr << "Cohen acceleration computed " << x << " on type " << boost::core::demangle(typeid(Real).name()) << "\n";
std::cerr << "But expected value is " << pi<Real>()*pi<Real>()/12 << "\n";
}*/
}
BENCHMARK_TEMPLATE(NaiveSum, float);
BENCHMARK_TEMPLATE(NaiveSum, double);
BENCHMARK_TEMPLATE(NaiveSum, long double);
BENCHMARK_TEMPLATE(NaiveSum, float128);
BENCHMARK_TEMPLATE(NaiveSum, cpp_bin_float_50);
BENCHMARK_TEMPLATE(NaiveSum, cpp_bin_float_100);
BENCHMARK_TEMPLATE(NaiveSum, number<mpfr_float_backend<100>>);
BENCHMARK_TEMPLATE(NaiveSum, number<mpfr_float_backend<200>>);
BENCHMARK_TEMPLATE(NaiveSum, number<mpfr_float_backend<300>>);
BENCHMARK_TEMPLATE(NaiveSum, number<mpfr_float_backend<400>>);
BENCHMARK_TEMPLATE(NaiveSum, number<mpfr_float_backend<1000>>);
BENCHMARK_MAIN();