mirror of
https://github.com/boostorg/math.git
synced 2026-01-19 04:22:09 +00:00
Remove NVRTC workaround Apply GPU markers to ibeta_inverse Apply GPU markers to t_dist_inv Fix warning suppression Add dispatch function and remove workaround Move disabling block Make binomial GPU enabled Add SYCL testing of ibeta Add SYCL testing of ibeta_inv Add SYCL testing of ibeta_inv_ab Add SYCL testing of full beta suite Add makers to fwd decls Add special forward decls for NVRTC Add betac nvrtc testing Add betac CUDA testing Add ibeta CUDA testing Add ibeta NVRTC testing Add ibetac NVRTC testing Add ibeta_derviative testing to nvrtc Add ibeta_derivative CUDA testing Add cbrt policy overload for NVRTC Fix NVRTC definition of BOOST_MATH_IF_CONSTEXPR Add ibeta_inv and ibetac_inv NVRTC testing Fix make pair helper on device Add CUDA testing of ibeta_inv* and ibetac_inv* Move location so that it also works on NVRTC Add NVRTC testing of ibeta_inv* and ibetac_inv* Fixup test sets since they ignore the policy Make the beta dist GPU compatible Add beta dist SYCL testing Add beta dist CUDA testing Add beta dist NVRTC testing
242 lines
10 KiB
C++
242 lines
10 KiB
C++
// Copyright John Maddock 2006.
|
|
// Copyright Paul A. Bristow 2007, 2009
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0. (See accompanying file
|
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
|
|
|
|
#include <boost/math/concepts/real_concept.hpp>
|
|
#define BOOST_TEST_MAIN
|
|
#include <boost/test/unit_test.hpp>
|
|
#include <boost/test/tools/floating_point_comparison.hpp>
|
|
#include <boost/math/special_functions/beta.hpp>
|
|
#include <boost/math/special_functions/math_fwd.hpp>
|
|
#include <boost/math/tools/stats.hpp>
|
|
#include "../include_private/boost/math/tools/test.hpp"
|
|
#include <boost/math/constants/constants.hpp>
|
|
#include <boost/type_traits/is_floating_point.hpp>
|
|
#include <boost/array.hpp>
|
|
#include "functor.hpp"
|
|
|
|
#ifdef TEST_GSL
|
|
#include <gsl/gsl_errno.h>
|
|
#include <gsl/gsl_message.h>
|
|
#endif
|
|
|
|
#include "handle_test_result.hpp"
|
|
#include "table_type.hpp"
|
|
|
|
#ifndef SC_
|
|
#define SC_(x) static_cast<typename table_type<T>::type>(BOOST_JOIN(x, L))
|
|
#endif
|
|
|
|
template <class Real, class T>
|
|
void test_inverses(const T& data)
|
|
{
|
|
using namespace std;
|
|
//typedef typename T::value_type row_type;
|
|
typedef Real value_type;
|
|
|
|
value_type precision = static_cast<value_type>(ldexp(1.0, 1-boost::math::policies::digits<value_type, boost::math::policies::policy<> >()/2)) * 100;
|
|
if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50)
|
|
precision = 1; // 1% or two decimal digits, all we can hope for when the input is truncated
|
|
|
|
for(unsigned i = 0; i < data.size(); ++i)
|
|
{
|
|
//
|
|
// These inverse tests are thrown off if the output of the
|
|
// incomplete beta is too close to 1: basically there is insuffient
|
|
// information left in the value we're using as input to the inverse
|
|
// to be able to get back to the original value.
|
|
//
|
|
if(Real(data[i][5]) == 0)
|
|
{
|
|
BOOST_CHECK_EQUAL(boost::math::ibeta_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][5])), std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity() : boost::math::tools::max_value<value_type>());
|
|
BOOST_CHECK_EQUAL(boost::math::ibeta_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][5])), boost::math::tools::min_value<value_type>());
|
|
}
|
|
else if((1 - Real(data[i][5]) > 0.001)
|
|
&& (fabs(Real(data[i][5])) > 2 * boost::math::tools::min_value<value_type>())
|
|
&& (fabs(Real(data[i][5])) > 2 * boost::math::tools::min_value<double>()))
|
|
{
|
|
value_type inv = boost::math::ibeta_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][5]));
|
|
BOOST_CHECK_CLOSE(Real(data[i][0]), inv, precision);
|
|
inv = boost::math::ibeta_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][5]));
|
|
BOOST_CHECK_CLOSE(Real(data[i][1]), inv, precision);
|
|
}
|
|
else if(1 == Real(data[i][5]))
|
|
{
|
|
BOOST_CHECK_EQUAL(boost::math::ibeta_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][5])), boost::math::tools::min_value<value_type>());
|
|
BOOST_CHECK_EQUAL(boost::math::ibeta_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][5])), std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity() : boost::math::tools::max_value<value_type>());
|
|
}
|
|
|
|
if(Real(data[i][6]) == 0)
|
|
{
|
|
BOOST_CHECK_EQUAL(boost::math::ibetac_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][6])), boost::math::tools::min_value<value_type>());
|
|
BOOST_CHECK_EQUAL(boost::math::ibetac_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][6])), std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity() : boost::math::tools::max_value<value_type>());
|
|
}
|
|
else if((1 - Real(data[i][6]) > 0.001)
|
|
&& (fabs(Real(data[i][6])) > 2 * boost::math::tools::min_value<value_type>())
|
|
&& (fabs(Real(data[i][6])) > 2 * boost::math::tools::min_value<double>()))
|
|
{
|
|
value_type inv = boost::math::ibetac_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][6]));
|
|
BOOST_CHECK_CLOSE(Real(data[i][0]), inv, precision);
|
|
inv = boost::math::ibetac_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][6]));
|
|
BOOST_CHECK_CLOSE(Real(data[i][1]), inv, precision);
|
|
}
|
|
else if(Real(data[i][6]) == 1)
|
|
{
|
|
BOOST_CHECK_EQUAL(boost::math::ibetac_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][6])), std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity() : boost::math::tools::max_value<value_type>());
|
|
BOOST_CHECK_EQUAL(boost::math::ibetac_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][6])), boost::math::tools::min_value<value_type>());
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class Real, class T>
|
|
void test_inverses2(const T& data, const char* type_name, const char* test_name)
|
|
{
|
|
#if !(defined(ERROR_REPORTING_MODE) && !defined(IBETA_INVA_FUNCTION_TO_TEST))
|
|
//typedef typename T::value_type row_type;
|
|
typedef Real value_type;
|
|
|
|
typedef value_type (*pg)(value_type, value_type, value_type);
|
|
#ifdef IBETA_INVA_FUNCTION_TO_TEST
|
|
pg funcp = IBETA_INVA_FUNCTION_TO_TEST;
|
|
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
|
|
pg funcp = boost::math::ibeta_inva<value_type, value_type, value_type>;
|
|
#else
|
|
pg funcp = boost::math::ibeta_inva;
|
|
#endif
|
|
|
|
boost::math::tools::test_result<value_type> result;
|
|
|
|
std::cout << "Testing " << test_name << " with type " << type_name
|
|
<< "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";
|
|
|
|
//
|
|
// test ibeta_inva(T, T, T) against data:
|
|
//
|
|
result = boost::math::tools::test_hetero<Real>(
|
|
data,
|
|
bind_func<Real>(funcp, 0, 1, 2),
|
|
extract_result<Real>(3));
|
|
handle_test_result(result, data[result.worst()], result.worst(), type_name, "ibeta_inva", test_name);
|
|
//
|
|
// test ibetac_inva(T, T, T) against data:
|
|
//
|
|
#ifdef IBETAC_INVA_FUNCTION_TO_TEST
|
|
funcp = IBETAC_INVA_FUNCTION_TO_TEST;
|
|
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
|
|
funcp = boost::math::ibetac_inva<value_type, value_type, value_type>;
|
|
#else
|
|
funcp = boost::math::ibetac_inva;
|
|
#endif
|
|
result = boost::math::tools::test_hetero<Real>(
|
|
data,
|
|
bind_func<Real>(funcp, 0, 1, 2),
|
|
extract_result<Real>(4));
|
|
handle_test_result(result, data[result.worst()], result.worst(), type_name, "ibetac_inva", test_name);
|
|
//
|
|
// test ibeta_invb(T, T, T) against data:
|
|
//
|
|
#ifdef IBETA_INVB_FUNCTION_TO_TEST
|
|
funcp = IBETA_INVB_FUNCTION_TO_TEST;
|
|
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
|
|
funcp = boost::math::ibeta_invb<value_type, value_type, value_type>;
|
|
#else
|
|
funcp = boost::math::ibeta_invb;
|
|
#endif
|
|
result = boost::math::tools::test_hetero<Real>(
|
|
data,
|
|
bind_func<Real>(funcp, 0, 1, 2),
|
|
extract_result<Real>(5));
|
|
handle_test_result(result, data[result.worst()], result.worst(), type_name, "ibeta_invb", test_name);
|
|
//
|
|
// test ibetac_invb(T, T, T) against data:
|
|
//
|
|
#ifdef IBETAC_INVB_FUNCTION_TO_TEST
|
|
funcp = IBETAC_INVB_FUNCTION_TO_TEST;
|
|
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
|
|
funcp = boost::math::ibetac_invb<value_type, value_type, value_type>;
|
|
#else
|
|
funcp = boost::math::ibetac_invb;
|
|
#endif
|
|
result = boost::math::tools::test_hetero<Real>(
|
|
data,
|
|
bind_func<Real>(funcp, 0, 1, 2),
|
|
extract_result<Real>(6));
|
|
handle_test_result(result, data[result.worst()], result.worst(), type_name, "ibetac_invb", test_name);
|
|
#endif
|
|
}
|
|
|
|
template <class T>
|
|
void test_beta(T, const char* name)
|
|
{
|
|
#if !defined(ERROR_REPORTING_MODE)
|
|
//
|
|
// The actual test data is rather verbose, so it's in a separate file
|
|
//
|
|
// The contents are as follows, each row of data contains
|
|
// five items, input value a, input value b, integration limits x, beta(a, b, x) and ibeta(a, b, x):
|
|
//
|
|
std::cout << "Running sanity checks for type " << name << std::endl;
|
|
|
|
#if !defined(TEST_DATA) || (TEST_DATA == 1)
|
|
# include "ibeta_small_data.ipp"
|
|
|
|
test_inverses<T>(ibeta_small_data);
|
|
#endif
|
|
|
|
#if !defined(TEST_DATA) || (TEST_DATA == 2)
|
|
# include "ibeta_data.ipp"
|
|
|
|
test_inverses<T>(ibeta_data);
|
|
#endif
|
|
|
|
#if !defined(TEST_DATA) || (TEST_DATA == 3)
|
|
# include "ibeta_large_data.ipp"
|
|
|
|
test_inverses<T>(ibeta_large_data);
|
|
#endif
|
|
#endif
|
|
|
|
#if !defined(TEST_REAL_CONCEPT) || defined(FULL_TEST) || (TEST_DATA == 4)
|
|
if(boost::is_floating_point<T>::value){
|
|
//
|
|
// This accuracy test is normally only enabled for "real"
|
|
// floating point types and not for class real_concept.
|
|
// The reason is that these tests are exceptionally slow
|
|
// to complete when T doesn't have Lanczos support defined for it.
|
|
//
|
|
# include "ibeta_inva_data.ipp"
|
|
|
|
test_inverses2<T>(ibeta_inva_data, name, "Inverse incomplete beta");
|
|
}
|
|
#endif
|
|
//
|
|
// Special spot tests and bug reports:
|
|
//
|
|
if (std::numeric_limits<T>::has_quiet_NaN)
|
|
{
|
|
T n = std::numeric_limits<T>::quiet_NaN();
|
|
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_inva(n, static_cast<T>(2.125), static_cast<T>(0.125)), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_inva(static_cast<T>(2.125), n, static_cast<T>(0.125)), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_inva(static_cast<T>(2.125), static_cast<T>(1.125), n), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(n, static_cast<T>(2.125), static_cast<T>(0.125)), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(static_cast<T>(2.125), n, static_cast<T>(0.125)), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(static_cast<T>(2.125), static_cast<T>(1.125), n), std::domain_error);
|
|
}
|
|
if (std::numeric_limits<T>::has_infinity)
|
|
{
|
|
T n = std::numeric_limits<T>::infinity();
|
|
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(n, static_cast<T>(2.125), static_cast<T>(0.125)), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(static_cast<T>(2.125), n, static_cast<T>(0.125)), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(static_cast<T>(2.125), static_cast<T>(1.125), n), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(static_cast<T>(-n), static_cast<T>(2.125), static_cast<T>(0.125)), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(static_cast<T>(2.125), static_cast<T>(-n), static_cast<T>(0.125)), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(static_cast<T>(2.125), static_cast<T>(1.125), static_cast<T>(-n)), std::domain_error);
|
|
}
|
|
|
|
}
|
|
|