2
0
mirror of https://github.com/boostorg/math.git synced 2026-01-19 04:22:09 +00:00
Files
math/test/test_ibeta_inv_ab.hpp
Matt Borland adf8abd346 Apply GPU markers to ibeta_inv_ab
Remove NVRTC workaround

Apply GPU markers to ibeta_inverse

Apply GPU markers to t_dist_inv

Fix warning suppression

Add dispatch function and remove workaround

Move disabling block

Make binomial GPU enabled

Add SYCL testing of ibeta

Add SYCL testing of ibeta_inv

Add SYCL testing of ibeta_inv_ab

Add SYCL testing of full beta suite

Add makers to fwd decls

Add special forward decls for NVRTC

Add betac nvrtc testing

Add betac CUDA testing

Add ibeta CUDA testing

Add ibeta NVRTC testing

Add ibetac NVRTC testing

Add ibeta_derviative testing to nvrtc

Add ibeta_derivative CUDA testing

Add cbrt policy overload for NVRTC

Fix NVRTC definition of BOOST_MATH_IF_CONSTEXPR

Add ibeta_inv and ibetac_inv NVRTC testing

Fix make pair helper on device

Add CUDA testing of ibeta_inv* and ibetac_inv*

Move location so that it also works on NVRTC

Add NVRTC testing of ibeta_inv* and ibetac_inv*

Fixup test sets since they ignore the policy

Make the beta dist GPU compatible

Add beta dist SYCL testing

Add beta dist CUDA testing

Add beta dist NVRTC testing
2024-08-30 13:46:01 -04:00

242 lines
10 KiB
C++

// Copyright John Maddock 2006.
// Copyright Paul A. Bristow 2007, 2009
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
#include <boost/math/concepts/real_concept.hpp>
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/special_functions/beta.hpp>
#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/tools/stats.hpp>
#include "../include_private/boost/math/tools/test.hpp"
#include <boost/math/constants/constants.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
#include "functor.hpp"
#ifdef TEST_GSL
#include <gsl/gsl_errno.h>
#include <gsl/gsl_message.h>
#endif
#include "handle_test_result.hpp"
#include "table_type.hpp"
#ifndef SC_
#define SC_(x) static_cast<typename table_type<T>::type>(BOOST_JOIN(x, L))
#endif
template <class Real, class T>
void test_inverses(const T& data)
{
using namespace std;
//typedef typename T::value_type row_type;
typedef Real value_type;
value_type precision = static_cast<value_type>(ldexp(1.0, 1-boost::math::policies::digits<value_type, boost::math::policies::policy<> >()/2)) * 100;
if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50)
precision = 1; // 1% or two decimal digits, all we can hope for when the input is truncated
for(unsigned i = 0; i < data.size(); ++i)
{
//
// These inverse tests are thrown off if the output of the
// incomplete beta is too close to 1: basically there is insuffient
// information left in the value we're using as input to the inverse
// to be able to get back to the original value.
//
if(Real(data[i][5]) == 0)
{
BOOST_CHECK_EQUAL(boost::math::ibeta_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][5])), std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity() : boost::math::tools::max_value<value_type>());
BOOST_CHECK_EQUAL(boost::math::ibeta_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][5])), boost::math::tools::min_value<value_type>());
}
else if((1 - Real(data[i][5]) > 0.001)
&& (fabs(Real(data[i][5])) > 2 * boost::math::tools::min_value<value_type>())
&& (fabs(Real(data[i][5])) > 2 * boost::math::tools::min_value<double>()))
{
value_type inv = boost::math::ibeta_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][5]));
BOOST_CHECK_CLOSE(Real(data[i][0]), inv, precision);
inv = boost::math::ibeta_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][5]));
BOOST_CHECK_CLOSE(Real(data[i][1]), inv, precision);
}
else if(1 == Real(data[i][5]))
{
BOOST_CHECK_EQUAL(boost::math::ibeta_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][5])), boost::math::tools::min_value<value_type>());
BOOST_CHECK_EQUAL(boost::math::ibeta_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][5])), std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity() : boost::math::tools::max_value<value_type>());
}
if(Real(data[i][6]) == 0)
{
BOOST_CHECK_EQUAL(boost::math::ibetac_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][6])), boost::math::tools::min_value<value_type>());
BOOST_CHECK_EQUAL(boost::math::ibetac_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][6])), std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity() : boost::math::tools::max_value<value_type>());
}
else if((1 - Real(data[i][6]) > 0.001)
&& (fabs(Real(data[i][6])) > 2 * boost::math::tools::min_value<value_type>())
&& (fabs(Real(data[i][6])) > 2 * boost::math::tools::min_value<double>()))
{
value_type inv = boost::math::ibetac_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][6]));
BOOST_CHECK_CLOSE(Real(data[i][0]), inv, precision);
inv = boost::math::ibetac_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][6]));
BOOST_CHECK_CLOSE(Real(data[i][1]), inv, precision);
}
else if(Real(data[i][6]) == 1)
{
BOOST_CHECK_EQUAL(boost::math::ibetac_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][6])), std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity() : boost::math::tools::max_value<value_type>());
BOOST_CHECK_EQUAL(boost::math::ibetac_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][6])), boost::math::tools::min_value<value_type>());
}
}
}
template <class Real, class T>
void test_inverses2(const T& data, const char* type_name, const char* test_name)
{
#if !(defined(ERROR_REPORTING_MODE) && !defined(IBETA_INVA_FUNCTION_TO_TEST))
//typedef typename T::value_type row_type;
typedef Real value_type;
typedef value_type (*pg)(value_type, value_type, value_type);
#ifdef IBETA_INVA_FUNCTION_TO_TEST
pg funcp = IBETA_INVA_FUNCTION_TO_TEST;
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
pg funcp = boost::math::ibeta_inva<value_type, value_type, value_type>;
#else
pg funcp = boost::math::ibeta_inva;
#endif
boost::math::tools::test_result<value_type> result;
std::cout << "Testing " << test_name << " with type " << type_name
<< "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";
//
// test ibeta_inva(T, T, T) against data:
//
result = boost::math::tools::test_hetero<Real>(
data,
bind_func<Real>(funcp, 0, 1, 2),
extract_result<Real>(3));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "ibeta_inva", test_name);
//
// test ibetac_inva(T, T, T) against data:
//
#ifdef IBETAC_INVA_FUNCTION_TO_TEST
funcp = IBETAC_INVA_FUNCTION_TO_TEST;
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
funcp = boost::math::ibetac_inva<value_type, value_type, value_type>;
#else
funcp = boost::math::ibetac_inva;
#endif
result = boost::math::tools::test_hetero<Real>(
data,
bind_func<Real>(funcp, 0, 1, 2),
extract_result<Real>(4));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "ibetac_inva", test_name);
//
// test ibeta_invb(T, T, T) against data:
//
#ifdef IBETA_INVB_FUNCTION_TO_TEST
funcp = IBETA_INVB_FUNCTION_TO_TEST;
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
funcp = boost::math::ibeta_invb<value_type, value_type, value_type>;
#else
funcp = boost::math::ibeta_invb;
#endif
result = boost::math::tools::test_hetero<Real>(
data,
bind_func<Real>(funcp, 0, 1, 2),
extract_result<Real>(5));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "ibeta_invb", test_name);
//
// test ibetac_invb(T, T, T) against data:
//
#ifdef IBETAC_INVB_FUNCTION_TO_TEST
funcp = IBETAC_INVB_FUNCTION_TO_TEST;
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
funcp = boost::math::ibetac_invb<value_type, value_type, value_type>;
#else
funcp = boost::math::ibetac_invb;
#endif
result = boost::math::tools::test_hetero<Real>(
data,
bind_func<Real>(funcp, 0, 1, 2),
extract_result<Real>(6));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "ibetac_invb", test_name);
#endif
}
template <class T>
void test_beta(T, const char* name)
{
#if !defined(ERROR_REPORTING_MODE)
//
// The actual test data is rather verbose, so it's in a separate file
//
// The contents are as follows, each row of data contains
// five items, input value a, input value b, integration limits x, beta(a, b, x) and ibeta(a, b, x):
//
std::cout << "Running sanity checks for type " << name << std::endl;
#if !defined(TEST_DATA) || (TEST_DATA == 1)
# include "ibeta_small_data.ipp"
test_inverses<T>(ibeta_small_data);
#endif
#if !defined(TEST_DATA) || (TEST_DATA == 2)
# include "ibeta_data.ipp"
test_inverses<T>(ibeta_data);
#endif
#if !defined(TEST_DATA) || (TEST_DATA == 3)
# include "ibeta_large_data.ipp"
test_inverses<T>(ibeta_large_data);
#endif
#endif
#if !defined(TEST_REAL_CONCEPT) || defined(FULL_TEST) || (TEST_DATA == 4)
if(boost::is_floating_point<T>::value){
//
// This accuracy test is normally only enabled for "real"
// floating point types and not for class real_concept.
// The reason is that these tests are exceptionally slow
// to complete when T doesn't have Lanczos support defined for it.
//
# include "ibeta_inva_data.ipp"
test_inverses2<T>(ibeta_inva_data, name, "Inverse incomplete beta");
}
#endif
//
// Special spot tests and bug reports:
//
if (std::numeric_limits<T>::has_quiet_NaN)
{
T n = std::numeric_limits<T>::quiet_NaN();
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_inva(n, static_cast<T>(2.125), static_cast<T>(0.125)), std::domain_error);
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_inva(static_cast<T>(2.125), n, static_cast<T>(0.125)), std::domain_error);
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_inva(static_cast<T>(2.125), static_cast<T>(1.125), n), std::domain_error);
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(n, static_cast<T>(2.125), static_cast<T>(0.125)), std::domain_error);
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(static_cast<T>(2.125), n, static_cast<T>(0.125)), std::domain_error);
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(static_cast<T>(2.125), static_cast<T>(1.125), n), std::domain_error);
}
if (std::numeric_limits<T>::has_infinity)
{
T n = std::numeric_limits<T>::infinity();
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(n, static_cast<T>(2.125), static_cast<T>(0.125)), std::domain_error);
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(static_cast<T>(2.125), n, static_cast<T>(0.125)), std::domain_error);
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(static_cast<T>(2.125), static_cast<T>(1.125), n), std::domain_error);
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(static_cast<T>(-n), static_cast<T>(2.125), static_cast<T>(0.125)), std::domain_error);
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(static_cast<T>(2.125), static_cast<T>(-n), static_cast<T>(0.125)), std::domain_error);
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(static_cast<T>(2.125), static_cast<T>(1.125), static_cast<T>(-n)), std::domain_error);
}
}