2
0
mirror of https://github.com/boostorg/math.git synced 2026-01-19 04:22:09 +00:00
Files
math/test/test_exp_sinh_quad_float.cu
Matt Borland b5214b5935 Add device only impl
Add function for device only impl

Fix function signatures

Fix arrays

Add basic test for compilation

Allow serial implementation to be run on host under NVCC

Add verification steps

Add arrays of levels coefficient sizes

Cleanup test set

Add double test set

Add structure for the doubles support

Save space by using pointer to different size arrays rather than 2d

Separate the double precision weights into their own arrays

Remove stray call to std::abs

Add NVRTC testing

Add documentation section

Add device function signature for sinh_sinh_integrate

Add float coefficients

Add double coeffs

Add device specific impl

Add sinh_sinh CUDA testing

Add sinh_sinh NVRTC testing
2024-09-12 10:25:17 -04:00

134 lines
3.8 KiB
Plaintext

// Copyright John Maddock 2016.
// Copyright Matt Borland 2024.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <iostream>
#include <iomanip>
#include <vector>
#include <boost/math/quadrature/exp_sinh.hpp>
#include <boost/math/special_functions.hpp>
#include <boost/math/tools/precision.hpp>
#include "cuda_managed_ptr.hpp"
#include "stopwatch.hpp"
// For the CUDA runtime routines (prefixed with "cuda_")
#include <cuda_runtime.h>
typedef float float_type;
__host__ __device__ float_type func(float_type x)
{
BOOST_MATH_STD_USING
return 1/(1+x*x);
}
/**
* CUDA Kernel Device code
*
*/
__global__ void cuda_test(float_type *out, int numElements)
{
int i = blockDim.x * blockIdx.x + threadIdx.x;
float_type tol = boost::math::tools::root_epsilon<float_type>();
float_type error;
float_type L1;
boost::math::size_t levels;
if (i < numElements)
{
out[i] = boost::math::quadrature::exp_sinh_integrate(func, tol, &error, &L1, &levels);
}
}
/**
* Host main routine
*/
int main(void)
{
// Error code to check return values for CUDA calls
cudaError_t err = cudaSuccess;
// Print the vector length to be used, and compute its size
int numElements = 50000;
std::cout << "[Vector operation on " << numElements << " elements]" << std::endl;
// Allocate the managed input vector A
cuda_managed_ptr<float_type> input_vector(numElements);
// Allocate the managed output vector C
cuda_managed_ptr<float_type> output_vector(numElements);
// Initialize the input vectors
for (int i = 0; i < numElements; ++i)
{
input_vector[i] = M_PI * (static_cast<float_type>(i) / numElements);
}
// Launch the Vector Add CUDA Kernel
int threadsPerBlock = 512;
int blocksPerGrid = (numElements + threadsPerBlock - 1) / threadsPerBlock;
std::cout << "CUDA kernel launch with " << blocksPerGrid << " blocks of " << threadsPerBlock << " threads" << std::endl;
watch w;
cuda_test<<<blocksPerGrid, threadsPerBlock>>>(output_vector.get(), numElements);
cudaDeviceSynchronize();
std::cout << "CUDA kernal done in: " << w.elapsed() << "s" << std::endl;
err = cudaGetLastError();
if (err != cudaSuccess)
{
std::cerr << "Failed to launch vectorAdd kernel (error code " << cudaGetErrorString(err) << ")!" << std::endl;
return EXIT_FAILURE;
}
// Verify that the result vector is correct
std::vector<float_type> results;
results.reserve(numElements);
w.reset();
float_type tol = boost::math::tools::root_epsilon<float_type>();
float_type error;
float_type L1;
boost::math::quadrature::exp_sinh<float_type> integrator;
for(int i = 0; i < numElements; ++i)
{
results.push_back(integrator.integrate(func, tol, &error, &L1));
}
double t = w.elapsed();
// check the results
int failed_count = 0;
for(int i = 0; i < numElements; ++i)
{
const auto eps = boost::math::epsilon_difference(output_vector[i], results[i]);
if (eps > 10)
{
std::cerr << std::setprecision(std::numeric_limits<float_type>::digits10)
<< "Result verification failed at element " << i << "!\n"
<< "Device: " << output_vector[i]
<< "\n Host: " << results[i]
<< "\n Eps: " << eps << "\n";
failed_count++;
}
if (failed_count > 100)
{
break;
}
}
if (failed_count != 0)
{
std::cout << "Test FAILED" << std::endl;
return EXIT_FAILURE;
}
std::cout << "Test PASSED, normal calculation time: " << t << "s" << std::endl;
std::cout << "Done\n";
return 0;
}