mirror of
https://github.com/boostorg/math.git
synced 2026-01-19 04:22:09 +00:00
151 lines
8.1 KiB
HTML
151 lines
8.1 KiB
HTML
<html>
|
|
<head>
|
|
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
|
<title>Inverse Hyperbolic Functions Overview</title>
|
|
<link rel="stylesheet" href="../../math.css" type="text/css">
|
|
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
|
|
<link rel="home" href="../../index.html" title="Math Toolkit 4.2.1">
|
|
<link rel="up" href="../inv_hyper.html" title="Inverse Hyperbolic Functions">
|
|
<link rel="prev" href="../inv_hyper.html" title="Inverse Hyperbolic Functions">
|
|
<link rel="next" href="acosh.html" title="acosh">
|
|
<meta name="viewport" content="width=device-width, initial-scale=1">
|
|
</head>
|
|
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
|
|
<table cellpadding="2" width="100%"><tr>
|
|
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
|
|
<td align="center"><a href="../../../../../../index.html">Home</a></td>
|
|
<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
|
|
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
|
|
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
|
|
<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
|
|
</tr></table>
|
|
<hr>
|
|
<div class="spirit-nav">
|
|
<a accesskey="p" href="../inv_hyper.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../inv_hyper.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="acosh.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
|
|
</div>
|
|
<div class="section">
|
|
<div class="titlepage"><div><div><h3 class="title">
|
|
<a name="math_toolkit.inv_hyper.inv_hyper_over"></a><a class="link" href="inv_hyper_over.html" title="Inverse Hyperbolic Functions Overview">Inverse Hyperbolic
|
|
Functions Overview</a>
|
|
</h3></div></div></div>
|
|
<p>
|
|
The exponential function is defined, for all objects for which this makes
|
|
sense, as the power series
|
|
</p>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="inlinemediaobject"><img src="../../../equations/special_functions_blurb1.svg"></span>
|
|
|
|
</p></blockquote></div>
|
|
<p>
|
|
with <span class="emphasis"><em><code class="literal">n! = 1x2x3x4x5...xn</code></em></span> (and <span class="emphasis"><em><code class="literal">0!
|
|
= 1</code></em></span> by definition) being the factorial of <span class="emphasis"><em><code class="literal">n</code></em></span>.
|
|
In particular, the exponential function is well defined for real numbers,
|
|
complex number, quaternions, octonions, and matrices of complex numbers,
|
|
among others.
|
|
</p>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="emphasis"><em><span class="bold"><strong>Graph of exp on R</strong></span></em></span>
|
|
</p></blockquote></div>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="inlinemediaobject"><img src="../../../graphs/exp_on_r.png"></span>
|
|
</p></blockquote></div>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="emphasis"><em><span class="bold"><strong>Real and Imaginary parts of exp on C</strong></span></em></span>
|
|
</p></blockquote></div>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="inlinemediaobject"><img src="../../../graphs/im_exp_on_c.png"></span>
|
|
</p></blockquote></div>
|
|
<p>
|
|
The hyperbolic functions are defined as power series which can be computed
|
|
(for reals, complex, quaternions and octonions) as:
|
|
</p>
|
|
<p>
|
|
Hyperbolic cosine:
|
|
</p>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="inlinemediaobject"><img src="../../../equations/special_functions_blurb5.svg"></span>
|
|
|
|
</p></blockquote></div>
|
|
<p>
|
|
Hyperbolic sine:
|
|
</p>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="inlinemediaobject"><img src="../../../equations/special_functions_blurb6.svg"></span>
|
|
|
|
</p></blockquote></div>
|
|
<p>
|
|
Hyperbolic tangent:
|
|
</p>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="inlinemediaobject"><img src="../../../equations/special_functions_blurb7.svg"></span>
|
|
|
|
</p></blockquote></div>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="emphasis"><em><span class="bold"><strong>Trigonometric functions on R (cos: purple;
|
|
sin: red; tan: blue)</strong></span></em></span>
|
|
</p></blockquote></div>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="inlinemediaobject"><img src="../../../graphs/trigonometric.png"></span>
|
|
</p></blockquote></div>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="emphasis"><em><span class="bold"><strong>Hyperbolic functions on r (cosh: purple;
|
|
sinh: red; tanh: blue)</strong></span></em></span>
|
|
</p></blockquote></div>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="inlinemediaobject"><img src="../../../graphs/hyperbolic.png"></span>
|
|
</p></blockquote></div>
|
|
<p>
|
|
The hyperbolic sine is one to one on the set of real numbers, with range
|
|
the full set of reals, while the hyperbolic tangent is also one to one on
|
|
the set of real numbers but with range <code class="literal">[0;+∞[</code>, and therefore
|
|
both have inverses.
|
|
</p>
|
|
<p>
|
|
The hyperbolic cosine is one to one from <code class="literal">]-∞;+1[</code> onto
|
|
<code class="literal">]-∞;-1[</code> (and from <code class="literal">]+1;+∞[</code> onto <code class="literal">]-∞;-1[</code>).
|
|
</p>
|
|
<p>
|
|
The inverse function we use here is defined on <code class="literal">]-∞;-1[</code>
|
|
with range <code class="literal">]-∞;+1[</code>.
|
|
</p>
|
|
<p>
|
|
The inverse of the hyperbolic tangent is called the Argument hyperbolic tangent,
|
|
and can be computed as
|
|
</p>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="inlinemediaobject"><img src="../../../equations/special_functions_blurb15.svg"></span>
|
|
|
|
</p></blockquote></div>
|
|
<p>
|
|
The inverse of the hyperbolic sine is called the Argument hyperbolic sine,
|
|
and can be computed (for <code class="literal">[-1;-1+ε[</code>) as
|
|
</p>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="inlinemediaobject"><img src="../../../equations/special_functions_blurb17.svg"></span>
|
|
|
|
</p></blockquote></div>
|
|
<p>
|
|
The inverse of the hyperbolic cosine is called the Argument hyperbolic cosine,
|
|
and can be computed as
|
|
</p>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="inlinemediaobject"><img src="../../../equations/special_functions_blurb18.svg"></span>
|
|
|
|
</p></blockquote></div>
|
|
</div>
|
|
<div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
|
|
Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
|
|
Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
|
|
Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
|
|
Walker and Xiaogang Zhang<p>
|
|
Distributed under the Boost Software License, Version 1.0. (See accompanying
|
|
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
|
|
</p>
|
|
</div>
|
|
<hr>
|
|
<div class="spirit-nav">
|
|
<a accesskey="p" href="../inv_hyper.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../inv_hyper.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="acosh.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
|
|
</div>
|
|
</body>
|
|
</html>
|