mirror of
https://github.com/boostorg/math.git
synced 2026-01-19 16:32:10 +00:00
904 lines
56 KiB
HTML
904 lines
56 KiB
HTML
<html>
|
||
<head>
|
||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||
<title>Binomial Distribution</title>
|
||
<link rel="stylesheet" href="../../../math.css" type="text/css">
|
||
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
|
||
<link rel="home" href="../../../index.html" title="Math Toolkit 4.2.1">
|
||
<link rel="up" href="../dists.html" title="Distributions">
|
||
<link rel="prev" href="beta_dist.html" title="Beta Distribution">
|
||
<link rel="next" href="cauchy_dist.html" title="Cauchy-Lorentz Distribution">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1">
|
||
</head>
|
||
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
|
||
<table cellpadding="2" width="100%"><tr>
|
||
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../../boost.png"></td>
|
||
<td align="center"><a href="../../../../../../../index.html">Home</a></td>
|
||
<td align="center"><a href="../../../../../../../libs/libraries.htm">Libraries</a></td>
|
||
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
|
||
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
|
||
<td align="center"><a href="../../../../../../../more/index.htm">More</a></td>
|
||
</tr></table>
|
||
<hr>
|
||
<div class="spirit-nav">
|
||
<a accesskey="p" href="beta_dist.html"><img src="../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../dists.html"><img src="../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../index.html"><img src="../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="cauchy_dist.html"><img src="../../../../../../../doc/src/images/next.png" alt="Next"></a>
|
||
</div>
|
||
<div class="section">
|
||
<div class="titlepage"><div><div><h4 class="title">
|
||
<a name="math_toolkit.dist_ref.dists.binomial_dist"></a><a class="link" href="binomial_dist.html" title="Binomial Distribution">Binomial
|
||
Distribution</a>
|
||
</h4></div></div></div>
|
||
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">distributions</span><span class="special">/</span><span class="identifier">binomial</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span></pre>
|
||
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span>
|
||
|
||
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">RealType</span> <span class="special">=</span> <span class="keyword">double</span><span class="special">,</span>
|
||
<span class="keyword">class</span> <a class="link" href="../../../policy.html" title="Chapter 22. Policies: Controlling Precision, Error Handling etc">Policy</a> <span class="special">=</span> <a class="link" href="../../pol_ref/pol_ref_ref.html" title="Policy Class Reference">policies::policy<></a> <span class="special">></span>
|
||
<span class="keyword">class</span> <span class="identifier">binomial_distribution</span><span class="special">;</span>
|
||
|
||
<span class="keyword">typedef</span> <span class="identifier">binomial_distribution</span><span class="special"><></span> <span class="identifier">binomial</span><span class="special">;</span>
|
||
|
||
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">RealType</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../../policy.html" title="Chapter 22. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">></span>
|
||
<span class="keyword">class</span> <span class="identifier">binomial_distribution</span>
|
||
<span class="special">{</span>
|
||
<span class="keyword">public</span><span class="special">:</span>
|
||
<span class="keyword">typedef</span> <span class="identifier">RealType</span> <span class="identifier">value_type</span><span class="special">;</span>
|
||
<span class="keyword">typedef</span> <span class="identifier">Policy</span> <span class="identifier">policy_type</span><span class="special">;</span>
|
||
|
||
<span class="keyword">static</span> <span class="keyword">const</span> <span class="emphasis"><em>unspecified-type</em></span> <span class="identifier">clopper_pearson_exact_interval</span><span class="special">;</span>
|
||
<span class="keyword">static</span> <span class="keyword">const</span> <span class="emphasis"><em>unspecified-type</em></span> <span class="identifier">jeffreys_prior_interval</span><span class="special">;</span>
|
||
|
||
<span class="comment">// construct:</span>
|
||
<span class="identifier">binomial_distribution</span><span class="special">(</span><span class="identifier">RealType</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">RealType</span> <span class="identifier">p</span><span class="special">);</span>
|
||
|
||
<span class="comment">// parameter access::</span>
|
||
<span class="identifier">RealType</span> <span class="identifier">success_fraction</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
|
||
<span class="identifier">RealType</span> <span class="identifier">trials</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
|
||
|
||
<span class="comment">// Bounds on success fraction:</span>
|
||
<span class="keyword">static</span> <span class="identifier">RealType</span> <span class="identifier">find_lower_bound_on_p</span><span class="special">(</span>
|
||
<span class="identifier">RealType</span> <span class="identifier">trials</span><span class="special">,</span>
|
||
<span class="identifier">RealType</span> <span class="identifier">successes</span><span class="special">,</span>
|
||
<span class="identifier">RealType</span> <span class="identifier">probability</span><span class="special">,</span>
|
||
<span class="emphasis"><em>unspecified-type</em></span> <span class="identifier">method</span> <span class="special">=</span> <span class="identifier">clopper_pearson_exact_interval</span><span class="special">);</span>
|
||
<span class="keyword">static</span> <span class="identifier">RealType</span> <span class="identifier">find_upper_bound_on_p</span><span class="special">(</span>
|
||
<span class="identifier">RealType</span> <span class="identifier">trials</span><span class="special">,</span>
|
||
<span class="identifier">RealType</span> <span class="identifier">successes</span><span class="special">,</span>
|
||
<span class="identifier">RealType</span> <span class="identifier">probability</span><span class="special">,</span>
|
||
<span class="emphasis"><em>unspecified-type</em></span> <span class="identifier">method</span> <span class="special">=</span> <span class="identifier">clopper_pearson_exact_interval</span><span class="special">);</span>
|
||
|
||
<span class="comment">// estimate min/max number of trials:</span>
|
||
<span class="keyword">static</span> <span class="identifier">RealType</span> <span class="identifier">find_minimum_number_of_trials</span><span class="special">(</span>
|
||
<span class="identifier">RealType</span> <span class="identifier">k</span><span class="special">,</span> <span class="comment">// number of events</span>
|
||
<span class="identifier">RealType</span> <span class="identifier">p</span><span class="special">,</span> <span class="comment">// success fraction</span>
|
||
<span class="identifier">RealType</span> <span class="identifier">alpha</span><span class="special">);</span> <span class="comment">// risk level</span>
|
||
|
||
<span class="keyword">static</span> <span class="identifier">RealType</span> <span class="identifier">find_maximum_number_of_trials</span><span class="special">(</span>
|
||
<span class="identifier">RealType</span> <span class="identifier">k</span><span class="special">,</span> <span class="comment">// number of events</span>
|
||
<span class="identifier">RealType</span> <span class="identifier">p</span><span class="special">,</span> <span class="comment">// success fraction</span>
|
||
<span class="identifier">RealType</span> <span class="identifier">alpha</span><span class="special">);</span> <span class="comment">// risk level</span>
|
||
<span class="special">};</span>
|
||
|
||
<span class="special">}}</span> <span class="comment">// namespaces</span>
|
||
</pre>
|
||
<p>
|
||
The class type <code class="computeroutput"><span class="identifier">binomial_distribution</span></code>
|
||
represents a <a href="http://mathworld.wolfram.com/BinomialDistribution.html" target="_top">binomial
|
||
distribution</a>: it is used when there are exactly two mutually exclusive
|
||
outcomes of a trial. These outcomes are labelled "success" and
|
||
"failure". The <a class="link" href="binomial_dist.html" title="Binomial Distribution">Binomial
|
||
Distribution</a> is used to obtain the probability of observing k successes
|
||
in N trials, with the probability of success on a single trial denoted
|
||
by p. The binomial distribution assumes that p is fixed for all trials.
|
||
</p>
|
||
<div class="note"><table border="0" summary="Note">
|
||
<tr>
|
||
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../../../../../doc/src/images/note.png"></td>
|
||
<th align="left">Note</th>
|
||
</tr>
|
||
<tr><td align="left" valign="top"><p>
|
||
The random variable for the binomial distribution is the number of successes,
|
||
(the number of trials is a fixed property of the distribution) whereas
|
||
for the negative binomial, the random variable is the number of trials,
|
||
for a fixed number of successes.
|
||
</p></td></tr>
|
||
</table></div>
|
||
<p>
|
||
The PDF for the binomial distribution is given by:
|
||
</p>
|
||
<div class="blockquote"><blockquote class="blockquote"><p>
|
||
<span class="inlinemediaobject"><img src="../../../../equations/binomial_ref2.svg"></span>
|
||
|
||
</p></blockquote></div>
|
||
<p>
|
||
The following two graphs illustrate how the PDF changes depending upon
|
||
the distributions parameters, first we'll keep the success fraction <span class="emphasis"><em>p</em></span>
|
||
fixed at 0.5, and vary the sample size:
|
||
</p>
|
||
<div class="blockquote"><blockquote class="blockquote"><p>
|
||
<span class="inlinemediaobject"><img src="../../../../graphs/binomial_pdf_1.svg" align="middle"></span>
|
||
|
||
</p></blockquote></div>
|
||
<p>
|
||
Alternatively, we can keep the sample size fixed at N=20 and vary the success
|
||
fraction <span class="emphasis"><em>p</em></span>:
|
||
</p>
|
||
<div class="blockquote"><blockquote class="blockquote"><p>
|
||
<span class="inlinemediaobject"><img src="../../../../graphs/binomial_pdf_2.svg" align="middle"></span>
|
||
|
||
</p></blockquote></div>
|
||
<div class="caution"><table border="0" summary="Caution">
|
||
<tr>
|
||
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Caution]" src="../../../../../../../doc/src/images/caution.png"></td>
|
||
<th align="left">Caution</th>
|
||
</tr>
|
||
<tr><td align="left" valign="top">
|
||
<p>
|
||
The Binomial distribution is a discrete distribution: internally, functions
|
||
like the <code class="computeroutput"><span class="identifier">cdf</span></code> and <code class="computeroutput"><span class="identifier">pdf</span></code> are treated "as if" they
|
||
are continuous functions, but in reality the results returned from these
|
||
functions only have meaning if an integer value is provided for the random
|
||
variate argument.
|
||
</p>
|
||
<p>
|
||
The quantile function will by default return an integer result that has
|
||
been <span class="emphasis"><em>rounded outwards</em></span>. That is to say lower quantiles
|
||
(where the probability is less than 0.5) are rounded downward, and upper
|
||
quantiles (where the probability is greater than 0.5) are rounded upwards.
|
||
This behaviour ensures that if an X% quantile is requested, then <span class="emphasis"><em>at
|
||
least</em></span> the requested coverage will be present in the central
|
||
region, and <span class="emphasis"><em>no more than</em></span> the requested coverage
|
||
will be present in the tails.
|
||
</p>
|
||
<p>
|
||
This behaviour can be changed so that the quantile functions are rounded
|
||
differently, or even return a real-valued result using <a class="link" href="../../pol_overview.html" title="Policy Overview">Policies</a>.
|
||
It is strongly recommended that you read the tutorial <a class="link" href="../../pol_tutorial/understand_dis_quant.html" title="Understanding Quantiles of Discrete Distributions">Understanding
|
||
Quantiles of Discrete Distributions</a> before using the quantile
|
||
function on the Binomial distribution. The <a class="link" href="../../pol_ref/discrete_quant_ref.html" title="Discrete Quantile Policies">reference
|
||
docs</a> describe how to change the rounding policy for these distributions.
|
||
</p>
|
||
</td></tr>
|
||
</table></div>
|
||
<h5>
|
||
<a name="math_toolkit.dist_ref.dists.binomial_dist.h0"></a>
|
||
<span class="phrase"><a name="math_toolkit.dist_ref.dists.binomial_dist.member_functions"></a></span><a class="link" href="binomial_dist.html#math_toolkit.dist_ref.dists.binomial_dist.member_functions">Member
|
||
Functions</a>
|
||
</h5>
|
||
<h6>
|
||
<a name="math_toolkit.dist_ref.dists.binomial_dist.h1"></a>
|
||
<span class="phrase"><a name="math_toolkit.dist_ref.dists.binomial_dist.construct"></a></span><a class="link" href="binomial_dist.html#math_toolkit.dist_ref.dists.binomial_dist.construct">Construct</a>
|
||
</h6>
|
||
<pre class="programlisting"><span class="identifier">binomial_distribution</span><span class="special">(</span><span class="identifier">RealType</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">RealType</span> <span class="identifier">p</span><span class="special">);</span>
|
||
</pre>
|
||
<p>
|
||
Constructor: <span class="emphasis"><em>n</em></span> is the total number of trials, <span class="emphasis"><em>p</em></span>
|
||
is the probability of success of a single trial.
|
||
</p>
|
||
<p>
|
||
Requires <code class="computeroutput"><span class="number">0</span> <span class="special"><=</span>
|
||
<span class="identifier">p</span> <span class="special"><=</span>
|
||
<span class="number">1</span></code>, and <code class="computeroutput"><span class="identifier">n</span>
|
||
<span class="special">>=</span> <span class="number">0</span></code>,
|
||
otherwise calls <a class="link" href="../../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>.
|
||
</p>
|
||
<h6>
|
||
<a name="math_toolkit.dist_ref.dists.binomial_dist.h2"></a>
|
||
<span class="phrase"><a name="math_toolkit.dist_ref.dists.binomial_dist.accessors"></a></span><a class="link" href="binomial_dist.html#math_toolkit.dist_ref.dists.binomial_dist.accessors">Accessors</a>
|
||
</h6>
|
||
<pre class="programlisting"><span class="identifier">RealType</span> <span class="identifier">success_fraction</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
|
||
</pre>
|
||
<p>
|
||
Returns the parameter <span class="emphasis"><em>p</em></span> from which this distribution
|
||
was constructed.
|
||
</p>
|
||
<pre class="programlisting"><span class="identifier">RealType</span> <span class="identifier">trials</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
|
||
</pre>
|
||
<p>
|
||
Returns the parameter <span class="emphasis"><em>n</em></span> from which this distribution
|
||
was constructed.
|
||
</p>
|
||
<h6>
|
||
<a name="math_toolkit.dist_ref.dists.binomial_dist.h3"></a>
|
||
<span class="phrase"><a name="math_toolkit.dist_ref.dists.binomial_dist.lower_bound_on_the_success_fract"></a></span><a class="link" href="binomial_dist.html#math_toolkit.dist_ref.dists.binomial_dist.lower_bound_on_the_success_fract">Lower
|
||
Bound on the Success Fraction</a>
|
||
</h6>
|
||
<pre class="programlisting"><span class="keyword">static</span> <span class="identifier">RealType</span> <span class="identifier">find_lower_bound_on_p</span><span class="special">(</span>
|
||
<span class="identifier">RealType</span> <span class="identifier">trials</span><span class="special">,</span>
|
||
<span class="identifier">RealType</span> <span class="identifier">successes</span><span class="special">,</span>
|
||
<span class="identifier">RealType</span> <span class="identifier">alpha</span><span class="special">,</span>
|
||
<span class="emphasis"><em>unspecified-type</em></span> <span class="identifier">method</span> <span class="special">=</span> <span class="identifier">clopper_pearson_exact_interval</span><span class="special">);</span>
|
||
</pre>
|
||
<p>
|
||
Returns a lower bound on the success fraction:
|
||
</p>
|
||
<div class="variablelist">
|
||
<p class="title"><b></b></p>
|
||
<dl class="variablelist">
|
||
<dt><span class="term">trials</span></dt>
|
||
<dd><p>
|
||
The total number of trials conducted.
|
||
</p></dd>
|
||
<dt><span class="term">successes</span></dt>
|
||
<dd><p>
|
||
The number of successes that occurred.
|
||
</p></dd>
|
||
<dt><span class="term">alpha</span></dt>
|
||
<dd><p>
|
||
The largest acceptable probability that the true value of the success
|
||
fraction is <span class="bold"><strong>less than</strong></span> the value
|
||
returned.
|
||
</p></dd>
|
||
<dt><span class="term">method</span></dt>
|
||
<dd><p>
|
||
An optional parameter that specifies the method to be used to compute
|
||
the interval (See below).
|
||
</p></dd>
|
||
</dl>
|
||
</div>
|
||
<p>
|
||
For example, if you observe <span class="emphasis"><em>k</em></span> successes from <span class="emphasis"><em>n</em></span>
|
||
trials the best estimate for the success fraction is simply <span class="emphasis"><em>k/n</em></span>,
|
||
but if you want to be 95% sure that the true value is <span class="bold"><strong>greater
|
||
than</strong></span> some value, <span class="emphasis"><em>p<sub>min</sub></em></span>, then:
|
||
</p>
|
||
<pre class="programlisting"><span class="identifier">p</span><sub>min</sub> <span class="special">=</span> <span class="identifier">binomial_distribution</span><span class="special"><</span><span class="identifier">RealType</span><span class="special">>::</span><span class="identifier">find_lower_bound_on_p</span><span class="special">(</span><span class="identifier">n</span><span class="special">,</span> <span class="identifier">k</span><span class="special">,</span> <span class="number">0.05</span><span class="special">);</span>
|
||
</pre>
|
||
<p>
|
||
<a class="link" href="../../stat_tut/weg/binom_eg/binom_conf.html" title="Calculating Confidence Limits on the Frequency of Occurrence for a Binomial Distribution">See worked
|
||
example.</a>
|
||
</p>
|
||
<p>
|
||
There are currently two possible values available for the <span class="emphasis"><em>method</em></span>
|
||
optional parameter: <span class="emphasis"><em>clopper_pearson_exact_interval</em></span>
|
||
or <span class="emphasis"><em>jeffreys_prior_interval</em></span>. These constants are both
|
||
members of class template <code class="computeroutput"><span class="identifier">binomial_distribution</span></code>,
|
||
so usage is for example:
|
||
</p>
|
||
<pre class="programlisting"><span class="identifier">p</span> <span class="special">=</span> <span class="identifier">binomial_distribution</span><span class="special"><</span><span class="identifier">RealType</span><span class="special">>::</span><span class="identifier">find_lower_bound_on_p</span><span class="special">(</span>
|
||
<span class="identifier">n</span><span class="special">,</span> <span class="identifier">k</span><span class="special">,</span> <span class="number">0.05</span><span class="special">,</span> <span class="identifier">binomial_distribution</span><span class="special"><</span><span class="identifier">RealType</span><span class="special">>::</span><span class="identifier">jeffreys_prior_interval</span><span class="special">);</span>
|
||
</pre>
|
||
<p>
|
||
The default method if this parameter is not specified is the Clopper Pearson
|
||
"exact" interval. This produces an interval that guarantees at
|
||
least <code class="computeroutput"><span class="number">100</span><span class="special">(</span><span class="number">1</span><span class="special">-</span><span class="identifier">alpha</span><span class="special">)%</span></code> coverage, but which is known to be overly
|
||
conservative, sometimes producing intervals with much greater than the
|
||
requested coverage.
|
||
</p>
|
||
<p>
|
||
The alternative calculation method produces a non-informative Jeffreys
|
||
Prior interval. It produces <code class="computeroutput"><span class="number">100</span><span class="special">(</span><span class="number">1</span><span class="special">-</span><span class="identifier">alpha</span><span class="special">)%</span></code>
|
||
coverage only <span class="emphasis"><em>in the average case</em></span>, though is typically
|
||
very close to the requested coverage level. It is one of the main methods
|
||
of calculation recommended in the review by Brown, Cai and DasGupta.
|
||
</p>
|
||
<p>
|
||
Please note that the "textbook" calculation method using a normal
|
||
approximation (the Wald interval) is deliberately not provided: it is known
|
||
to produce consistently poor results, even when the sample size is surprisingly
|
||
large. Refer to Brown, Cai and DasGupta for a full explanation. Many other
|
||
methods of calculation are available, and may be more appropriate for specific
|
||
situations. Unfortunately there appears to be no consensus amongst statisticians
|
||
as to which is "best": refer to the discussion at the end of
|
||
Brown, Cai and DasGupta for examples.
|
||
</p>
|
||
<p>
|
||
The two methods provided here were chosen principally because they can
|
||
be used for both one and two sided intervals. See also:
|
||
</p>
|
||
<p>
|
||
Lawrence D. Brown, T. Tony Cai and Anirban DasGupta (2001), Interval Estimation
|
||
for a Binomial Proportion, Statistical Science, Vol. 16, No. 2, 101-133.
|
||
</p>
|
||
<p>
|
||
T. Tony Cai (2005), One-sided confidence intervals in discrete distributions,
|
||
Journal of Statistical Planning and Inference 131, 63-88.
|
||
</p>
|
||
<p>
|
||
Agresti, A. and Coull, B. A. (1998). Approximate is better than "exact"
|
||
for interval estimation of binomial proportions. Amer. Statist. 52 119-126.
|
||
</p>
|
||
<p>
|
||
Clopper, C. J. and Pearson, E. S. (1934). The use of confidence or fiducial
|
||
limits illustrated in the case of the binomial. Biometrika 26 404-413.
|
||
</p>
|
||
<h6>
|
||
<a name="math_toolkit.dist_ref.dists.binomial_dist.h4"></a>
|
||
<span class="phrase"><a name="math_toolkit.dist_ref.dists.binomial_dist.upper_bound_on_the_success_fract"></a></span><a class="link" href="binomial_dist.html#math_toolkit.dist_ref.dists.binomial_dist.upper_bound_on_the_success_fract">Upper
|
||
Bound on the Success Fraction</a>
|
||
</h6>
|
||
<pre class="programlisting"><span class="keyword">static</span> <span class="identifier">RealType</span> <span class="identifier">find_upper_bound_on_p</span><span class="special">(</span>
|
||
<span class="identifier">RealType</span> <span class="identifier">trials</span><span class="special">,</span>
|
||
<span class="identifier">RealType</span> <span class="identifier">successes</span><span class="special">,</span>
|
||
<span class="identifier">RealType</span> <span class="identifier">alpha</span><span class="special">,</span>
|
||
<span class="emphasis"><em>unspecified-type</em></span> <span class="identifier">method</span> <span class="special">=</span> <span class="identifier">clopper_pearson_exact_interval</span><span class="special">);</span>
|
||
</pre>
|
||
<p>
|
||
Returns an upper bound on the success fraction:
|
||
</p>
|
||
<div class="variablelist">
|
||
<p class="title"><b></b></p>
|
||
<dl class="variablelist">
|
||
<dt><span class="term">trials</span></dt>
|
||
<dd><p>
|
||
The total number of trials conducted.
|
||
</p></dd>
|
||
<dt><span class="term">successes</span></dt>
|
||
<dd><p>
|
||
The number of successes that occurred.
|
||
</p></dd>
|
||
<dt><span class="term">alpha</span></dt>
|
||
<dd><p>
|
||
The largest acceptable probability that the true value of the success
|
||
fraction is <span class="bold"><strong>greater than</strong></span> the value
|
||
returned.
|
||
</p></dd>
|
||
<dt><span class="term">method</span></dt>
|
||
<dd><p>
|
||
An optional parameter that specifies the method to be used to compute
|
||
the interval. Refer to the documentation for <code class="computeroutput"><span class="identifier">find_upper_bound_on_p</span></code>
|
||
above for the meaning of the method options.
|
||
</p></dd>
|
||
</dl>
|
||
</div>
|
||
<p>
|
||
For example, if you observe <span class="emphasis"><em>k</em></span> successes from <span class="emphasis"><em>n</em></span>
|
||
trials the best estimate for the success fraction is simply <span class="emphasis"><em>k/n</em></span>,
|
||
but if you want to be 95% sure that the true value is <span class="bold"><strong>less
|
||
than</strong></span> some value, <span class="emphasis"><em>p<sub>max</sub></em></span>, then:
|
||
</p>
|
||
<pre class="programlisting"><span class="identifier">p</span><sub>max</sub> <span class="special">=</span> <span class="identifier">binomial_distribution</span><span class="special"><</span><span class="identifier">RealType</span><span class="special">>::</span><span class="identifier">find_upper_bound_on_p</span><span class="special">(</span><span class="identifier">n</span><span class="special">,</span> <span class="identifier">k</span><span class="special">,</span> <span class="number">0.05</span><span class="special">);</span>
|
||
</pre>
|
||
<p>
|
||
<a class="link" href="../../stat_tut/weg/binom_eg/binom_conf.html" title="Calculating Confidence Limits on the Frequency of Occurrence for a Binomial Distribution">See worked
|
||
example.</a>
|
||
</p>
|
||
<div class="note"><table border="0" summary="Note">
|
||
<tr>
|
||
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../../../../../doc/src/images/note.png"></td>
|
||
<th align="left">Note</th>
|
||
</tr>
|
||
<tr><td align="left" valign="top">
|
||
<p>
|
||
In order to obtain a two sided bound on the success fraction, you call
|
||
both <code class="computeroutput"><span class="identifier">find_lower_bound_on_p</span></code>
|
||
<span class="bold"><strong>and</strong></span> <code class="computeroutput"><span class="identifier">find_upper_bound_on_p</span></code>
|
||
each with the same arguments.
|
||
</p>
|
||
<p>
|
||
If the desired risk level that the true success fraction lies outside
|
||
the bounds is α, then you pass α/2 to these functions.
|
||
</p>
|
||
<p>
|
||
So for example a two sided 95% confidence interval would be obtained
|
||
by passing α = 0.025 to each of the functions.
|
||
</p>
|
||
<p>
|
||
<a class="link" href="../../stat_tut/weg/binom_eg/binom_conf.html" title="Calculating Confidence Limits on the Frequency of Occurrence for a Binomial Distribution">See worked
|
||
example.</a>
|
||
</p>
|
||
</td></tr>
|
||
</table></div>
|
||
<h6>
|
||
<a name="math_toolkit.dist_ref.dists.binomial_dist.h5"></a>
|
||
<span class="phrase"><a name="math_toolkit.dist_ref.dists.binomial_dist.estimating_the_number_of_trials_"></a></span><a class="link" href="binomial_dist.html#math_toolkit.dist_ref.dists.binomial_dist.estimating_the_number_of_trials_">Estimating
|
||
the Number of Trials Required for a Certain Number of Successes</a>
|
||
</h6>
|
||
<pre class="programlisting"><span class="keyword">static</span> <span class="identifier">RealType</span> <span class="identifier">find_minimum_number_of_trials</span><span class="special">(</span>
|
||
<span class="identifier">RealType</span> <span class="identifier">k</span><span class="special">,</span> <span class="comment">// number of events</span>
|
||
<span class="identifier">RealType</span> <span class="identifier">p</span><span class="special">,</span> <span class="comment">// success fraction</span>
|
||
<span class="identifier">RealType</span> <span class="identifier">alpha</span><span class="special">);</span> <span class="comment">// probability threshold</span>
|
||
</pre>
|
||
<p>
|
||
This function estimates the minimum number of trials required to ensure
|
||
that more than k events is observed with a level of risk <span class="emphasis"><em>alpha</em></span>
|
||
that k or fewer events occur.
|
||
</p>
|
||
<div class="variablelist">
|
||
<p class="title"><b></b></p>
|
||
<dl class="variablelist">
|
||
<dt><span class="term">k</span></dt>
|
||
<dd><p>
|
||
The number of success observed.
|
||
</p></dd>
|
||
<dt><span class="term">p</span></dt>
|
||
<dd><p>
|
||
The probability of success for each trial.
|
||
</p></dd>
|
||
<dt><span class="term">alpha</span></dt>
|
||
<dd><p>
|
||
The maximum acceptable probability that k events or fewer will be
|
||
observed.
|
||
</p></dd>
|
||
</dl>
|
||
</div>
|
||
<p>
|
||
For example:
|
||
</p>
|
||
<pre class="programlisting"><span class="identifier">binomial_distribution</span><span class="special"><</span><span class="identifier">RealType</span><span class="special">>::</span><span class="identifier">find_number_of_trials</span><span class="special">(</span><span class="number">10</span><span class="special">,</span> <span class="number">0.5</span><span class="special">,</span> <span class="number">0.05</span><span class="special">);</span>
|
||
</pre>
|
||
<p>
|
||
Returns the smallest number of trials we must conduct to be 95% sure of
|
||
seeing 10 events that occur with frequency one half.
|
||
</p>
|
||
<h6>
|
||
<a name="math_toolkit.dist_ref.dists.binomial_dist.h6"></a>
|
||
<span class="phrase"><a name="math_toolkit.dist_ref.dists.binomial_dist.estimating_the_maximum_number_of"></a></span><a class="link" href="binomial_dist.html#math_toolkit.dist_ref.dists.binomial_dist.estimating_the_maximum_number_of">Estimating
|
||
the Maximum Number of Trials to Ensure no more than a Certain Number of
|
||
Successes</a>
|
||
</h6>
|
||
<pre class="programlisting"><span class="keyword">static</span> <span class="identifier">RealType</span> <span class="identifier">find_maximum_number_of_trials</span><span class="special">(</span>
|
||
<span class="identifier">RealType</span> <span class="identifier">k</span><span class="special">,</span> <span class="comment">// number of events</span>
|
||
<span class="identifier">RealType</span> <span class="identifier">p</span><span class="special">,</span> <span class="comment">// success fraction</span>
|
||
<span class="identifier">RealType</span> <span class="identifier">alpha</span><span class="special">);</span> <span class="comment">// probability threshold</span>
|
||
</pre>
|
||
<p>
|
||
This function estimates the maximum number of trials we can conduct to
|
||
ensure that k successes or fewer are observed, with a risk <span class="emphasis"><em>alpha</em></span>
|
||
that more than k occur.
|
||
</p>
|
||
<div class="variablelist">
|
||
<p class="title"><b></b></p>
|
||
<dl class="variablelist">
|
||
<dt><span class="term">k</span></dt>
|
||
<dd><p>
|
||
The number of success observed.
|
||
</p></dd>
|
||
<dt><span class="term">p</span></dt>
|
||
<dd><p>
|
||
The probability of success for each trial.
|
||
</p></dd>
|
||
<dt><span class="term">alpha</span></dt>
|
||
<dd><p>
|
||
The maximum acceptable probability that more than k events will be
|
||
observed.
|
||
</p></dd>
|
||
</dl>
|
||
</div>
|
||
<p>
|
||
For example:
|
||
</p>
|
||
<pre class="programlisting"><span class="identifier">binomial_distribution</span><span class="special"><</span><span class="identifier">RealType</span><span class="special">>::</span><span class="identifier">find_maximum_number_of_trials</span><span class="special">(</span><span class="number">0</span><span class="special">,</span> <span class="number">1e-6</span><span class="special">,</span> <span class="number">0.05</span><span class="special">);</span>
|
||
</pre>
|
||
<p>
|
||
Returns the largest number of trials we can conduct and still be 95% certain
|
||
of not observing any events that occur with one in a million frequency.
|
||
This is typically used in failure analysis.
|
||
</p>
|
||
<p>
|
||
<a class="link" href="../../stat_tut/weg/binom_eg/binom_size_eg.html" title="Estimating Sample Sizes for a Binomial Distribution.">See Worked
|
||
Example.</a>
|
||
</p>
|
||
<h5>
|
||
<a name="math_toolkit.dist_ref.dists.binomial_dist.h7"></a>
|
||
<span class="phrase"><a name="math_toolkit.dist_ref.dists.binomial_dist.non_member_accessors"></a></span><a class="link" href="binomial_dist.html#math_toolkit.dist_ref.dists.binomial_dist.non_member_accessors">Non-member
|
||
Accessors</a>
|
||
</h5>
|
||
<p>
|
||
All the <a class="link" href="../nmp.html" title="Non-Member Properties">usual non-member accessor
|
||
functions</a> that are generic to all distributions are supported:
|
||
<a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.cdf">Cumulative Distribution Function</a>,
|
||
<a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.pdf">Probability Density Function</a>,
|
||
<a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.quantile">Quantile</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.hazard">Hazard Function</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.chf">Cumulative Hazard Function</a>,
|
||
<a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.mean">mean</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.median">median</a>,
|
||
<a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.mode">mode</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.variance">variance</a>,
|
||
<a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.sd">standard deviation</a>,
|
||
<a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.skewness">skewness</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.kurtosis">kurtosis</a>, <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.kurtosis_excess">kurtosis_excess</a>,
|
||
<a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.range">range</a> and <a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.support">support</a>.
|
||
</p>
|
||
<p>
|
||
The domain for the random variable <span class="emphasis"><em>k</em></span> is <code class="computeroutput"><span class="number">0</span> <span class="special"><=</span> <span class="identifier">k</span> <span class="special"><=</span> <span class="identifier">N</span></code>, otherwise a <a class="link" href="../../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
|
||
is returned.
|
||
</p>
|
||
<p>
|
||
It's worth taking a moment to define what these accessors actually mean
|
||
in the context of this distribution:
|
||
</p>
|
||
<div class="table">
|
||
<a name="math_toolkit.dist_ref.dists.binomial_dist.meaning_of_the_non_member_access"></a><p class="title"><b>Table 5.1. Meaning of the non-member accessors</b></p>
|
||
<div class="table-contents"><table class="table" summary="Meaning of the non-member accessors">
|
||
<colgroup>
|
||
<col>
|
||
<col>
|
||
</colgroup>
|
||
<thead><tr>
|
||
<th>
|
||
<p>
|
||
Function
|
||
</p>
|
||
</th>
|
||
<th>
|
||
<p>
|
||
Meaning
|
||
</p>
|
||
</th>
|
||
</tr></thead>
|
||
<tbody>
|
||
<tr>
|
||
<td>
|
||
<p>
|
||
<a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.pdf">Probability Density
|
||
Function</a>
|
||
</p>
|
||
</td>
|
||
<td>
|
||
<p>
|
||
The probability of obtaining <span class="bold"><strong>exactly k
|
||
successes</strong></span> from n trials with success fraction p. For
|
||
example:
|
||
</p>
|
||
<p>
|
||
<code class="computeroutput"><span class="identifier">pdf</span><span class="special">(</span><span class="identifier">binomial</span><span class="special">(</span><span class="identifier">n</span><span class="special">,</span>
|
||
<span class="identifier">p</span><span class="special">),</span>
|
||
<span class="identifier">k</span><span class="special">)</span></code>
|
||
</p>
|
||
</td>
|
||
</tr>
|
||
<tr>
|
||
<td>
|
||
<p>
|
||
<a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.cdf">Cumulative Distribution
|
||
Function</a>
|
||
</p>
|
||
</td>
|
||
<td>
|
||
<p>
|
||
The probability of obtaining <span class="bold"><strong>k successes
|
||
or fewer</strong></span> from n trials with success fraction p. For
|
||
example:
|
||
</p>
|
||
<p>
|
||
<code class="computeroutput"><span class="identifier">cdf</span><span class="special">(</span><span class="identifier">binomial</span><span class="special">(</span><span class="identifier">n</span><span class="special">,</span>
|
||
<span class="identifier">p</span><span class="special">),</span>
|
||
<span class="identifier">k</span><span class="special">)</span></code>
|
||
</p>
|
||
</td>
|
||
</tr>
|
||
<tr>
|
||
<td>
|
||
<p>
|
||
<a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.ccdf">Complement of
|
||
the Cumulative Distribution Function</a>
|
||
</p>
|
||
</td>
|
||
<td>
|
||
<p>
|
||
The probability of obtaining <span class="bold"><strong>more than
|
||
k successes</strong></span> from n trials with success fraction p.
|
||
For example:
|
||
</p>
|
||
<p>
|
||
<code class="computeroutput"><span class="identifier">cdf</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">binomial</span><span class="special">(</span><span class="identifier">n</span><span class="special">,</span>
|
||
<span class="identifier">p</span><span class="special">),</span>
|
||
<span class="identifier">k</span><span class="special">))</span></code>
|
||
</p>
|
||
</td>
|
||
</tr>
|
||
<tr>
|
||
<td>
|
||
<p>
|
||
<a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.quantile">Quantile</a>
|
||
</p>
|
||
</td>
|
||
<td>
|
||
<p>
|
||
Given a binomial distribution with <span class="emphasis"><em>n</em></span> trials,
|
||
success fraction <span class="emphasis"><em>p</em></span> and probability <span class="emphasis"><em>P</em></span>,
|
||
finds the largest number of successes <span class="emphasis"><em>k</em></span>
|
||
whose CDF is less than <span class="emphasis"><em>P</em></span>. It is strongly
|
||
recommended that you read the tutorial <a class="link" href="../../pol_tutorial/understand_dis_quant.html" title="Understanding Quantiles of Discrete Distributions">Understanding
|
||
Quantiles of Discrete Distributions</a> before using the quantile
|
||
function.
|
||
</p>
|
||
</td>
|
||
</tr>
|
||
<tr>
|
||
<td>
|
||
<p>
|
||
<a class="link" href="../nmp.html#math_toolkit.dist_ref.nmp.quantile_c">Quantile
|
||
from the complement of the probability</a>
|
||
</p>
|
||
</td>
|
||
<td>
|
||
<p>
|
||
Given a binomial distribution with <span class="emphasis"><em>n</em></span> trials,
|
||
success fraction <span class="emphasis"><em>p</em></span> and probability <span class="emphasis"><em>Q</em></span>,
|
||
finds the smallest number of successes <span class="emphasis"><em>k</em></span>
|
||
whose CDF is greater than <span class="emphasis"><em>1-Q</em></span>. It is strongly
|
||
recommended that you read the tutorial <a class="link" href="../../pol_tutorial/understand_dis_quant.html" title="Understanding Quantiles of Discrete Distributions">Understanding
|
||
Quantiles of Discrete Distributions</a> before using the quantile
|
||
function.
|
||
</p>
|
||
</td>
|
||
</tr>
|
||
</tbody>
|
||
</table></div>
|
||
</div>
|
||
<br class="table-break"><h5>
|
||
<a name="math_toolkit.dist_ref.dists.binomial_dist.h8"></a>
|
||
<span class="phrase"><a name="math_toolkit.dist_ref.dists.binomial_dist.examples"></a></span><a class="link" href="binomial_dist.html#math_toolkit.dist_ref.dists.binomial_dist.examples">Examples</a>
|
||
</h5>
|
||
<p>
|
||
Various <a class="link" href="../../stat_tut/weg/binom_eg.html" title="Binomial Distribution Examples">worked examples</a>
|
||
are available illustrating the use of the binomial distribution.
|
||
</p>
|
||
<h5>
|
||
<a name="math_toolkit.dist_ref.dists.binomial_dist.h9"></a>
|
||
<span class="phrase"><a name="math_toolkit.dist_ref.dists.binomial_dist.accuracy"></a></span><a class="link" href="binomial_dist.html#math_toolkit.dist_ref.dists.binomial_dist.accuracy">Accuracy</a>
|
||
</h5>
|
||
<p>
|
||
This distribution is implemented using the incomplete beta functions <a class="link" href="../../sf_beta/ibeta_function.html" title="Incomplete Beta Functions">ibeta</a> and <a class="link" href="../../sf_beta/ibeta_function.html" title="Incomplete Beta Functions">ibetac</a>,
|
||
please refer to these functions for information on accuracy.
|
||
</p>
|
||
<h5>
|
||
<a name="math_toolkit.dist_ref.dists.binomial_dist.h10"></a>
|
||
<span class="phrase"><a name="math_toolkit.dist_ref.dists.binomial_dist.implementation"></a></span><a class="link" href="binomial_dist.html#math_toolkit.dist_ref.dists.binomial_dist.implementation">Implementation</a>
|
||
</h5>
|
||
<p>
|
||
In the following table <span class="emphasis"><em>p</em></span> is the probability that one
|
||
trial will be successful (the success fraction), <span class="emphasis"><em>n</em></span>
|
||
is the number of trials, <span class="emphasis"><em>k</em></span> is the number of successes,
|
||
<span class="emphasis"><em>p</em></span> is the probability and <span class="emphasis"><em>q = 1-p</em></span>.
|
||
</p>
|
||
<div class="informaltable"><table class="table">
|
||
<colgroup>
|
||
<col>
|
||
<col>
|
||
</colgroup>
|
||
<thead><tr>
|
||
<th>
|
||
<p>
|
||
Function
|
||
</p>
|
||
</th>
|
||
<th>
|
||
<p>
|
||
Implementation Notes
|
||
</p>
|
||
</th>
|
||
</tr></thead>
|
||
<tbody>
|
||
<tr>
|
||
<td>
|
||
<p>
|
||
pdf
|
||
</p>
|
||
</td>
|
||
<td>
|
||
<p>
|
||
Implementation is in terms of <a class="link" href="../../sf_beta/beta_derivative.html" title="Derivative of the Incomplete Beta Function">ibeta_derivative</a>:
|
||
if <sub>n</sub>C<sub>k </sub> is the binomial coefficient of a and b, then we have:
|
||
</p>
|
||
<div class="blockquote"><blockquote class="blockquote"><p>
|
||
<span class="inlinemediaobject"><img src="../../../../equations/binomial_ref1.svg"></span>
|
||
|
||
</p></blockquote></div>
|
||
<p>
|
||
Which can be evaluated as <code class="computeroutput"><span class="identifier">ibeta_derivative</span><span class="special">(</span><span class="identifier">k</span><span class="special">+</span><span class="number">1</span><span class="special">,</span> <span class="identifier">n</span><span class="special">-</span><span class="identifier">k</span><span class="special">+</span><span class="number">1</span><span class="special">,</span> <span class="identifier">p</span><span class="special">)</span> <span class="special">/</span>
|
||
<span class="special">(</span><span class="identifier">n</span><span class="special">+</span><span class="number">1</span><span class="special">)</span></code>
|
||
</p>
|
||
<p>
|
||
The function <a class="link" href="../../sf_beta/beta_derivative.html" title="Derivative of the Incomplete Beta Function">ibeta_derivative</a>
|
||
is used here, since it has already been optimised for the lowest
|
||
possible error - indeed this is really just a thin wrapper around
|
||
part of the internals of the incomplete beta function.
|
||
</p>
|
||
<p>
|
||
There are also various special cases: refer to the code for details.
|
||
</p>
|
||
</td>
|
||
</tr>
|
||
<tr>
|
||
<td>
|
||
<p>
|
||
cdf
|
||
</p>
|
||
</td>
|
||
<td>
|
||
<p>
|
||
Using the relation:
|
||
</p>
|
||
<pre class="table-programlisting"><span class="identifier">p</span> <span class="special">=</span> <span class="identifier">I</span><span class="special">[</span><span class="identifier">sub</span> <span class="number">1</span><span class="special">-</span><span class="identifier">p</span><span class="special">](</span><span class="identifier">n</span> <span class="special">-</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">k</span> <span class="special">+</span> <span class="number">1</span><span class="special">)</span>
|
||
<span class="special">=</span> <span class="number">1</span> <span class="special">-</span> <span class="identifier">I</span><span class="special">[</span><span class="identifier">sub</span> <span class="identifier">p</span><span class="special">](</span><span class="identifier">k</span> <span class="special">+</span> <span class="number">1</span><span class="special">,</span> <span class="identifier">n</span> <span class="special">-</span> <span class="identifier">k</span><span class="special">)</span>
|
||
<span class="special">=</span> <a class="link" href="../../sf_beta/ibeta_function.html" title="Incomplete Beta Functions">ibetac</a><span class="special">(</span><span class="identifier">k</span> <span class="special">+</span> <span class="number">1</span><span class="special">,</span> <span class="identifier">n</span> <span class="special">-</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">p</span><span class="special">)</span></pre>
|
||
<p>
|
||
There are also various special cases: refer to the code for details.
|
||
</p>
|
||
</td>
|
||
</tr>
|
||
<tr>
|
||
<td>
|
||
<p>
|
||
cdf complement
|
||
</p>
|
||
</td>
|
||
<td>
|
||
<p>
|
||
Using the relation: q = <a class="link" href="../../sf_beta/ibeta_function.html" title="Incomplete Beta Functions">ibeta</a>(k
|
||
+ 1, n - k, p)
|
||
</p>
|
||
<p>
|
||
There are also various special cases: refer to the code for details.
|
||
</p>
|
||
</td>
|
||
</tr>
|
||
<tr>
|
||
<td>
|
||
<p>
|
||
quantile
|
||
</p>
|
||
</td>
|
||
<td>
|
||
<p>
|
||
Since the cdf is non-linear in variate <span class="emphasis"><em>k</em></span>
|
||
none of the inverse incomplete beta functions can be used here.
|
||
Instead the quantile is found numerically using a derivative
|
||
free method (<a class="link" href="../../roots_noderiv/TOMS748.html" title="Algorithm TOMS 748: Alefeld, Potra and Shi: Enclosing zeros of continuous functions">TOMS
|
||
748 algorithm</a>).
|
||
</p>
|
||
</td>
|
||
</tr>
|
||
<tr>
|
||
<td>
|
||
<p>
|
||
quantile from the complement
|
||
</p>
|
||
</td>
|
||
<td>
|
||
<p>
|
||
Found numerically as above.
|
||
</p>
|
||
</td>
|
||
</tr>
|
||
<tr>
|
||
<td>
|
||
<p>
|
||
mean
|
||
</p>
|
||
</td>
|
||
<td>
|
||
<p>
|
||
<code class="computeroutput"><span class="identifier">p</span> <span class="special">*</span>
|
||
<span class="identifier">n</span></code>
|
||
</p>
|
||
</td>
|
||
</tr>
|
||
<tr>
|
||
<td>
|
||
<p>
|
||
variance
|
||
</p>
|
||
</td>
|
||
<td>
|
||
<p>
|
||
<code class="computeroutput"><span class="identifier">p</span> <span class="special">*</span>
|
||
<span class="identifier">n</span> <span class="special">*</span>
|
||
<span class="special">(</span><span class="number">1</span><span class="special">-</span><span class="identifier">p</span><span class="special">)</span></code>
|
||
</p>
|
||
</td>
|
||
</tr>
|
||
<tr>
|
||
<td>
|
||
<p>
|
||
mode
|
||
</p>
|
||
</td>
|
||
<td>
|
||
<p>
|
||
<code class="computeroutput"><span class="identifier">floor</span><span class="special">(</span><span class="identifier">p</span> <span class="special">*</span>
|
||
<span class="special">(</span><span class="identifier">n</span>
|
||
<span class="special">+</span> <span class="number">1</span><span class="special">))</span></code>
|
||
</p>
|
||
</td>
|
||
</tr>
|
||
<tr>
|
||
<td>
|
||
<p>
|
||
skewness
|
||
</p>
|
||
</td>
|
||
<td>
|
||
<p>
|
||
<code class="computeroutput"><span class="special">(</span><span class="number">1</span>
|
||
<span class="special">-</span> <span class="number">2</span>
|
||
<span class="special">*</span> <span class="identifier">p</span><span class="special">)</span> <span class="special">/</span>
|
||
<span class="identifier">sqrt</span><span class="special">(</span><span class="identifier">n</span> <span class="special">*</span>
|
||
<span class="identifier">p</span> <span class="special">*</span>
|
||
<span class="special">(</span><span class="number">1</span>
|
||
<span class="special">-</span> <span class="identifier">p</span><span class="special">))</span></code>
|
||
</p>
|
||
</td>
|
||
</tr>
|
||
<tr>
|
||
<td>
|
||
<p>
|
||
kurtosis
|
||
</p>
|
||
</td>
|
||
<td>
|
||
<p>
|
||
<code class="computeroutput"><span class="number">3</span> <span class="special">-</span>
|
||
<span class="special">(</span><span class="number">6</span>
|
||
<span class="special">/</span> <span class="identifier">n</span><span class="special">)</span> <span class="special">+</span>
|
||
<span class="special">(</span><span class="number">1</span>
|
||
<span class="special">/</span> <span class="special">(</span><span class="identifier">n</span> <span class="special">*</span>
|
||
<span class="identifier">p</span> <span class="special">*</span>
|
||
<span class="special">(</span><span class="number">1</span>
|
||
<span class="special">-</span> <span class="identifier">p</span><span class="special">)))</span></code>
|
||
</p>
|
||
</td>
|
||
</tr>
|
||
<tr>
|
||
<td>
|
||
<p>
|
||
kurtosis excess
|
||
</p>
|
||
</td>
|
||
<td>
|
||
<p>
|
||
<code class="computeroutput"><span class="special">(</span><span class="number">1</span>
|
||
<span class="special">-</span> <span class="number">6</span>
|
||
<span class="special">*</span> <span class="identifier">p</span>
|
||
<span class="special">*</span> <span class="identifier">q</span><span class="special">)</span> <span class="special">/</span>
|
||
<span class="special">(</span><span class="identifier">n</span>
|
||
<span class="special">*</span> <span class="identifier">p</span>
|
||
<span class="special">*</span> <span class="identifier">q</span><span class="special">)</span></code>
|
||
</p>
|
||
</td>
|
||
</tr>
|
||
<tr>
|
||
<td>
|
||
<p>
|
||
parameter estimation
|
||
</p>
|
||
</td>
|
||
<td>
|
||
<p>
|
||
The member functions <code class="computeroutput"><span class="identifier">find_upper_bound_on_p</span></code>
|
||
<code class="computeroutput"><span class="identifier">find_lower_bound_on_p</span></code>
|
||
and <code class="computeroutput"><span class="identifier">find_number_of_trials</span></code>
|
||
are implemented in terms of the inverse incomplete beta functions
|
||
<a class="link" href="../../sf_beta/ibeta_inv_function.html" title="The Incomplete Beta Function Inverses">ibetac_inv</a>,
|
||
<a class="link" href="../../sf_beta/ibeta_inv_function.html" title="The Incomplete Beta Function Inverses">ibeta_inv</a>,
|
||
and <a class="link" href="../../sf_beta/ibeta_inv_function.html" title="The Incomplete Beta Function Inverses">ibetac_invb</a>
|
||
respectively
|
||
</p>
|
||
</td>
|
||
</tr>
|
||
</tbody>
|
||
</table></div>
|
||
<h5>
|
||
<a name="math_toolkit.dist_ref.dists.binomial_dist.h11"></a>
|
||
<span class="phrase"><a name="math_toolkit.dist_ref.dists.binomial_dist.references"></a></span><a class="link" href="binomial_dist.html#math_toolkit.dist_ref.dists.binomial_dist.references">References</a>
|
||
</h5>
|
||
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
|
||
<li class="listitem">
|
||
<a href="http://mathworld.wolfram.com/BinomialDistribution.html" target="_top">Weisstein,
|
||
Eric W. "Binomial Distribution." From MathWorld--A Wolfram
|
||
Web Resource</a>.
|
||
</li>
|
||
<li class="listitem">
|
||
<a href="http://en.wikipedia.org/wiki/Beta_distribution" target="_top">Wikipedia
|
||
binomial distribution</a>.
|
||
</li>
|
||
<li class="listitem">
|
||
<a href="http://www.itl.nist.gov/div898/handbook/eda/section3/eda366i.htm" target="_top">NIST
|
||
Exploratory Data Analysis</a>.
|
||
</li>
|
||
</ul></div>
|
||
</div>
|
||
<div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
|
||
Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
|
||
Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
|
||
Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
|
||
Walker and Xiaogang Zhang<p>
|
||
Distributed under the Boost Software License, Version 1.0. (See accompanying
|
||
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
|
||
</p>
|
||
</div>
|
||
<hr>
|
||
<div class="spirit-nav">
|
||
<a accesskey="p" href="beta_dist.html"><img src="../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../dists.html"><img src="../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../index.html"><img src="../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="cauchy_dist.html"><img src="../../../../../../../doc/src/images/next.png" alt="Next"></a>
|
||
</div>
|
||
</body>
|
||
</html>
|