mirror of
https://github.com/boostorg/math.git
synced 2026-01-19 04:22:09 +00:00
Add SYCL testing of normal dist Add CUDA testing of normal dist Add NVRTC testing of normal dist NVRTC fixes Move headers for NVRTC support Add GPU support to inverse gaussian dist Add NVRTC testing of inverse Gaussian dist Add CUDA testing of inverse gaussian dist Add SYCL testing of inverse gaussian dist Add GPU support to lognormal dist Add SYCL testing of lognormal dist Add CUDA testing of lognormal dist Add nvrtc testing of lognormal dist Add GPU support to negative binomial dist Avoid float_prior on GPU platform Add NVRTC testing of negative binomial dist Fix ambiguous use of nextafter Add CUDA testing of negative binomial dist Fix float_prior workaround Add SYCL testing of negative binomial dist Add GPU support to non_central_beta dist Add SYCL testing of nc beta dist Add CUDA testing of nc beta dist Enable generic dist handling on GPU Add GPU support to brent_find_minima Add NVRTC testing of nc beta dist Add utility header Replace non-functional macro with new function Add GPU support to non central chi squared dist Add SYCL testing of non central chi squared dist Add missing macro definition Markup generic quantile finder Add CUDA testing of non central chi squared dist Add NVRTC testing of non central chi squared dist Add GPU support to the non-central f dist Add SYCL testing of ncf Add CUDA testing of ncf dist Add NVRTC testing of ncf dist Add GPU support to students_t dist Add SYCL testing of students_t dist Add CUDA testing of students_t Add NVRTC testing of students_t dist Workaround for header cycle Add GPU support to pareto dist Add SYCL testing of pareto dist Add CUDA testing of pareto dist Add NVRTC testing of pareto dist Add missing header Add GPU support to poisson dist Add SYCL testing of poisson dist Add CUDA testing of poisson dist Add NVRTC testing of poisson dist Add forward decl for NVRTC platform Add GPU support to rayleigh dist Add CUDA testing of rayleigh dist Add SYCL testing of rayleigh dist Add NVRTC testing of rayleigh dist Add GPU support to triangular dist Add SYCL testing of triangular dist Add NVRTC testing of triangular dist Add CUDA testing of triangular dist Add GPU support to the uniform dist Add CUDA testing of uniform dist Add SYCL testing of uniform dist Add NVRTC testing of uniform dist Fix missing header Add markers to docs
190 lines
6.6 KiB
Plaintext
190 lines
6.6 KiB
Plaintext
[section:students_t_dist Students t Distribution]
|
|
|
|
``#include <boost/math/distributions/students_t.hpp>``
|
|
|
|
namespace boost{ namespace math{
|
|
|
|
template <class RealType = double,
|
|
class ``__Policy`` = ``__policy_class`` >
|
|
class students_t_distribution;
|
|
|
|
typedef students_t_distribution<> students_t;
|
|
|
|
template <class RealType, class ``__Policy``>
|
|
class students_t_distribution
|
|
{
|
|
typedef RealType value_type;
|
|
typedef Policy policy_type;
|
|
|
|
// Constructor:
|
|
BOOST_MATH_GPU_ENABLED students_t_distribution(const RealType& v);
|
|
|
|
// Accessor:
|
|
BOOST_MATH_GPU_ENABLED RealType degrees_of_freedom()const;
|
|
|
|
// degrees of freedom estimation:
|
|
BOOST_MATH_GPU_ENABLED static RealType find_degrees_of_freedom(
|
|
RealType difference_from_mean,
|
|
RealType alpha,
|
|
RealType beta,
|
|
RealType sd,
|
|
RealType hint = 100);
|
|
};
|
|
|
|
}} // namespaces
|
|
|
|
Student's t-distribution is a statistical distribution published by William Gosset in 1908.
|
|
His employer, Guinness Breweries, required him to publish under a
|
|
pseudonym (possibly to hide that they were using statistics to improve beer quality),
|
|
so he chose "Student".
|
|
|
|
Given N independent measurements, let
|
|
|
|
[equation students_t_dist]
|
|
|
|
where /M/ is the population mean, [mu] is the sample mean, and /s/ is the sample variance.
|
|
|
|
[@https://en.wikipedia.org/wiki/Student%27s_t-distribution Student's t-distribution]
|
|
is defined as the distribution of the random
|
|
variable t which is - very loosely - the "best" that we can do while not
|
|
knowing the true standard deviation of the sample. It has the PDF:
|
|
|
|
[equation students_t_ref1]
|
|
|
|
The Student's t-distribution takes a single parameter: the number of
|
|
degrees of freedom of the sample. When the degrees of freedom is
|
|
/one/ then this distribution is the same as the Cauchy-distribution.
|
|
As the number of degrees of freedom tends towards infinity, then this
|
|
distribution approaches the normal-distribution. The following graph
|
|
illustrates how the PDF varies with the degrees of freedom [nu]:
|
|
|
|
[graph students_t_pdf]
|
|
|
|
[h4 Member Functions]
|
|
|
|
BOOST_MATH_GPU_ENABLED students_t_distribution(const RealType& v);
|
|
|
|
Constructs a Student's t-distribution with /v/ degrees of freedom.
|
|
|
|
Requires /v/ > 0, including infinity (if RealType permits),
|
|
otherwise calls __domain_error. Note that
|
|
non-integral degrees of freedom are supported,
|
|
and are meaningful under certain circumstances.
|
|
|
|
BOOST_MATH_GPU_ENABLED RealType degrees_of_freedom()const;
|
|
|
|
returns the number of degrees of freedom of this distribution.
|
|
|
|
BOOST_MATH_GPU_ENABLED static RealType find_degrees_of_freedom(
|
|
RealType difference_from_mean,
|
|
RealType alpha,
|
|
RealType beta,
|
|
RealType sd,
|
|
RealType hint = 100);
|
|
|
|
returns the number of degrees of freedom required to observe a significant
|
|
result in the Student's t test when the mean differs from the "true"
|
|
mean by /difference_from_mean/.
|
|
|
|
[variablelist
|
|
[[difference_from_mean][The difference between the true mean and the sample mean
|
|
that we wish to show is significant.]]
|
|
[[alpha][The maximum acceptable probability of rejecting the null hypothesis
|
|
when it is in fact true.]]
|
|
[[beta][The maximum acceptable probability of failing to reject the null hypothesis
|
|
when it is in fact false.]]
|
|
[[sd][The sample standard deviation.]]
|
|
[[hint][A hint for the location to start looking for the result, a good choice for this
|
|
would be the sample size of a previous borderline Student's t test.]]
|
|
]
|
|
|
|
[note
|
|
Remember that for a two-sided test, you must divide alpha by two
|
|
before calling this function.]
|
|
|
|
For more information on this function see the
|
|
[@http://www.itl.nist.gov/div898/handbook/prc/section2/prc222.htm
|
|
NIST Engineering Statistics Handbook].
|
|
|
|
[h4 Non-member Accessors]
|
|
|
|
All the [link math_toolkit.dist_ref.nmp usual non-member accessor functions] that are generic to all
|
|
distributions are supported: __usual_accessors.
|
|
For this distribution all non-member accessor functions are marked with `BOOST_MATH_GPU_ENABLED` and can
|
|
be run on both host and device.
|
|
|
|
The domain of the random variable is \[-[infin], +[infin]\].
|
|
|
|
[h4 Examples]
|
|
|
|
Various [link math_toolkit.stat_tut.weg.st_eg worked examples] are available illustrating the use of the Student's t
|
|
distribution.
|
|
|
|
[h4 Accuracy]
|
|
|
|
The normal distribution is implemented in terms of the
|
|
[link math_toolkit.sf_beta.ibeta_function incomplete beta function]
|
|
and [link math_toolkit.sf_beta.ibeta_inv_function its inverses],
|
|
refer to accuracy data on those functions for more information.
|
|
|
|
[h4 Implementation]
|
|
|
|
In the following table /v/ is the degrees of freedom of the distribution,
|
|
/t/ is the random variate, /p/ is the probability and /q = 1-p/.
|
|
|
|
[table
|
|
[[Function][Implementation Notes]]
|
|
[[pdf][Using the relation: [role serif_italic pdf = (v \/ (v + t[super 2]))[super (1+v)\/2 ] / (sqrt(v) * __beta(v\/2, 0.5))] ]]
|
|
[[cdf][Using the relations:
|
|
|
|
[role serif_italic p = 1 - z /iff t > 0/]
|
|
|
|
[role serif_italic p = z /otherwise/]
|
|
|
|
where z is given by:
|
|
|
|
__ibeta(v \/ 2, 0.5, v \/ (v + t[super 2])) \/ 2 ['iff v < 2t[super 2]]
|
|
|
|
__ibetac(0.5, v \/ 2, t[super 2 ] / (v + t[super 2]) \/ 2 /otherwise/]]
|
|
[[cdf complement][Using the relation: q = cdf(-t) ]]
|
|
[[quantile][Using the relation: [role serif_italic t = sign(p - 0.5) * sqrt(v * y \/ x)]
|
|
|
|
where:
|
|
|
|
[role serif_italic x = __ibeta_inv(v \/ 2, 0.5, 2 * min(p, q)) ]
|
|
|
|
[role serif_italic y = 1 - x]
|
|
|
|
The quantities /x/ and /y/ are both returned by __ibeta_inv
|
|
without the subtraction implied above.]]
|
|
[[quantile from the complement][Using the relation: t = -quantile(q)]]
|
|
[[mode][0]]
|
|
[[mean][0]]
|
|
[[variance][if (v > 2) v \/ (v - 2) else NaN]]
|
|
[[skewness][if (v > 3) 0 else NaN ]]
|
|
[[kurtosis][if (v > 4) 3 * (v - 2) \/ (v - 4) else NaN]]
|
|
[[kurtosis excess][if (v > 4) 6 \/ (df - 4) else NaN]]
|
|
]
|
|
|
|
If the moment index /k/ is less than /v/, then the moment is undefined.
|
|
Evaluating the moment will throw a __domain_error unless ignored by a policy,
|
|
when it will return `std::numeric_limits<>::quiet_NaN();`
|
|
|
|
[h5:implementation Implementation]
|
|
|
|
(By popular demand, we now support infinite argument and random deviate.
|
|
But we have not implemented the return of infinity
|
|
as suggested by [@http://en.wikipedia.org/wiki/Student%27s_t-distribution Wikipedia Student's t],
|
|
instead throwing a domain error or return NaN.
|
|
See also [@https://svn.boost.org/trac/boost/ticket/7177].)
|
|
|
|
[endsect] [/section:students_t_dist Students t]
|
|
|
|
[/ students_t.qbk
|
|
Copyright 2006, 2012, 2017 John Maddock and Paul A. Bristow.
|
|
Distributed under the Boost Software License, Version 1.0.
|
|
(See accompanying file LICENSE_1_0.txt or copy at
|
|
http://www.boost.org/LICENSE_1_0.txt).
|
|
]
|
|
|