2
0
mirror of https://github.com/boostorg/math.git synced 2026-01-19 16:32:10 +00:00
Files
math/test/test_inverse_gamma_distribution.cpp
Matt Borland d01893d215 Add GPU markers to fisher f dist
Add SYCL testing of fisher f dist

Add CUDA fisher f dist testing

Add NVRTC fisher f dist testing

Add GPU support to gamma dist

Add SYCL testing of gamma dist

Add CUDA gamma dist testing

Add NVRTC gamma dist testing

Reduce number of threads per block since it can crash CI

Add GPU support to the geometric dist

Add SYCL testing of geometric dist

Add cuda::std::tie

Add GPU support to inv_discrete_quantile

Add CUDA testing of geometric dist

Add NVRTC testing of geometric dist

Add SYCL testing of inverse_chi_squared dist

Adjust tol

Add NVRTC inverse chi squared dist testing

Add CUDA inverse chi squared dist testing

Add GPU support to inverse gamma dist

Add SYCL testing to inverse gamma dist

Add NVRTC testing of inverse gamma dist

Add CUDA testing of inverse gamma dist
2024-09-04 11:07:17 -04:00

461 lines
20 KiB
C++

// test_inverse_gamma.cpp
// Copyright Paul A. Bristow 2010.
// Copyright John Maddock 2010.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifdef _MSC_VER
# pragma warning (disable : 4224) // nonstandard extension used : formal parameter 'type' was previously defined as a type
// in Boost.test and lexical_cast
# pragma warning (disable : 4310) // cast truncates constant value
#endif
#include <boost/math/tools/config.hpp>
#include "../include_private/boost/math/tools/test.hpp"
#ifndef BOOST_MATH_HAS_GPU_SUPPORT
#include <boost/math/concepts/real_concept.hpp> // for real_concept
using ::boost::math::concepts::real_concept;
#endif
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp> // for test_main
#include <boost/test/tools/floating_point_comparison.hpp> // for BOOST_CHECK_CLOSE_FRACTION
#include "test_out_of_range.hpp"
#include <boost/math/distributions/inverse_gamma.hpp> // for inverse_gamma_distribution
using boost::math::inverse_gamma_distribution;
using ::boost::math::inverse_gamma;
// using ::boost::math::cdf;
// using ::boost::math::pdf;
#include <boost/math/special_functions/gamma.hpp>
using boost::math::tgamma; // for naive pdf.
#include <iostream>
using std::cout;
using std::endl;
#include <limits>
using std::numeric_limits;
template <class RealType>
RealType naive_pdf(RealType shape, RealType scale, RealType x)
{ // Formula from Wikipedia
using namespace std; // For ADL of std functions.
using boost::math::tgamma;
RealType result = (pow(scale, shape) * pow(x, (-shape -1)) * exp(-scale/x) ) / tgamma(shape);
return result;
}
// Test using a spot value from some other reference source,
// in this case test values from output from R provided by Thomas Mang.
template <class RealType>
void test_spot(
RealType shape, // shape,
RealType scale, // scale,
RealType x, // random variate x,
RealType pd, // expected pdf,
RealType P, // expected CDF,
RealType Q, // expected complement of CDF,
RealType tol) // test tolerance.
{
boost::math::inverse_gamma_distribution<RealType> dist(shape, scale);
BOOST_CHECK_CLOSE_FRACTION
( // Compare to expected PDF.
pdf(dist, x), // calculated.
pd, // expected
tol);
BOOST_CHECK_CLOSE_FRACTION( // Compare to naive formula (might be less accurate).
pdf(dist, x), naive_pdf(dist.shape(), dist.scale(), x), tol);
BOOST_CHECK_CLOSE_FRACTION( // Compare direct logpdf to naive log(pdf())
logpdf(dist, x), log(pdf(dist,x)), tol);
BOOST_CHECK_CLOSE_FRACTION( // Compare to expected CDF.
cdf(dist, x), P, tol);
if((P < 0.999) && (Q < 0.999))
{ // We can only check this if P is not too close to 1,
// so that we can guarantee Q is accurate:
BOOST_CHECK_CLOSE_FRACTION(
cdf(complement(dist, x)), Q, tol);
BOOST_CHECK_CLOSE_FRACTION(
quantile(dist, P), x, tol); // quantile(pdf) = x
BOOST_CHECK_CLOSE_FRACTION(
quantile(complement(dist, Q)), x, tol);
}
} // test_spot
// Test using a spot value from some other reference source.
template <class RealType> // Any floating-point type RealType.
void test_spots(RealType)
{
// Basic sanity checks, test data is to six decimal places only
// so set tolerance to 0.000001 expressed as a percentage = 0.0001%.
RealType tolerance = 0.000001f; // as fraction.
cout << "Tolerance = " << tolerance * 100 << "%." << endl;
// This test values from output from R provided by Thomas Mang.
test_spot(static_cast<RealType>(2), static_cast<RealType>(1), // shape, scale
static_cast<RealType>(2.L), // x
static_cast<RealType>(0.075816332464079136L), // pdf
static_cast<RealType>(0.90979598956895047L), // cdf
static_cast<RealType>(1 - 0.90979598956895047L), // cdf complement
tolerance // tol
);
test_spot(static_cast<RealType>(1.593), static_cast<RealType>( 0.5), // shape, scale
static_cast<RealType>( 0.5), // x
static_cast<RealType>(0.82415241749687074L), // pdf
static_cast<RealType>(0.60648042700409865L), // cdf
static_cast<RealType>(1 - 0.60648042700409865L), // cdf complement
tolerance // tol
);
test_spot(static_cast<RealType>(13.319), static_cast<RealType>(0.5), // shape, scale
static_cast<RealType>(0.5), // x
static_cast<RealType>(0.00000000068343206235379223), // pdf
static_cast<RealType>(0.99999999997242739L), // cdf
static_cast<RealType>(1 - 0.99999999997242739L), // cdf complement
tolerance // tol
);
test_spot(static_cast<RealType>(1.593), static_cast<RealType>(1), // shape, scale
static_cast<RealType>(1.977), // x
static_cast<RealType>(0.11535946773398653L), // pdf
static_cast<RealType>(0.82449794420341549L), // cdf
static_cast<RealType>(1 - 0.82449794420341549L), // cdf complement
tolerance // tol
);
test_spot(static_cast<RealType>(6.666), static_cast<RealType>(1.411), // shape, scale
static_cast<RealType>(5), // x
static_cast<RealType>(0.000000084415758206386872), // pdf
static_cast<RealType>(0.99999993427280998L), // cdf
static_cast<RealType>(1 - 0.99999993427280998L), // cdf complement
tolerance // tol
);
// Check some bad parameters to the distribution,
#ifndef BOOST_NO_EXCEPTIONS
BOOST_MATH_CHECK_THROW(boost::math::inverse_gamma_distribution<RealType> igbad1(-1, 0), std::domain_error); // negative shape.
BOOST_MATH_CHECK_THROW(boost::math::inverse_gamma_distribution<RealType> igbad2(0, -1), std::domain_error); // negative scale.
BOOST_MATH_CHECK_THROW(boost::math::inverse_gamma_distribution<RealType> igbad2(-1, -1), std::domain_error); // negative scale and shape.
#else
BOOST_MATH_CHECK_THROW(boost::math::inverse_gamma_distribution<RealType>(-1, 0), std::domain_error); // negative shape.
BOOST_MATH_CHECK_THROW(boost::math::inverse_gamma_distribution<RealType>(0, -1), std::domain_error); // negative scale.
BOOST_MATH_CHECK_THROW(boost::math::inverse_gamma_distribution<RealType>(-1, -1), std::domain_error); // negative scale and shape.
#endif
inverse_gamma_distribution<RealType> ig21(2, 1);
if(std::numeric_limits<RealType>::has_infinity)
{
BOOST_MATH_CHECK_THROW(pdf(ig21, +std::numeric_limits<RealType>::infinity()), std::domain_error); // x = + infinity, pdf = 0
BOOST_MATH_CHECK_THROW(pdf(ig21, -std::numeric_limits<RealType>::infinity()), std::domain_error); // x = - infinity, pdf = 0
BOOST_MATH_CHECK_THROW(cdf(ig21, +std::numeric_limits<RealType>::infinity()),std::domain_error ); // x = + infinity, cdf = 1
BOOST_MATH_CHECK_THROW(cdf(ig21, -std::numeric_limits<RealType>::infinity()), std::domain_error); // x = - infinity, cdf = 0
BOOST_MATH_CHECK_THROW(cdf(complement(ig21, +std::numeric_limits<RealType>::infinity())), std::domain_error); // x = + infinity, c cdf = 0
BOOST_MATH_CHECK_THROW(cdf(complement(ig21, -std::numeric_limits<RealType>::infinity())), std::domain_error); // x = - infinity, c cdf = 1
#ifndef BOOST_NO_EXCEPTIONS
BOOST_MATH_CHECK_THROW(boost::math::inverse_gamma_distribution<RealType> nbad1(std::numeric_limits<RealType>::infinity(), static_cast<RealType>(1)), std::domain_error); // +infinite mean
BOOST_MATH_CHECK_THROW(boost::math::inverse_gamma_distribution<RealType> nbad1(-std::numeric_limits<RealType>::infinity(), static_cast<RealType>(1)), std::domain_error); // -infinite mean
BOOST_MATH_CHECK_THROW(boost::math::inverse_gamma_distribution<RealType> nbad1(static_cast<RealType>(0), std::numeric_limits<RealType>::infinity()), std::domain_error); // infinite sd
#else
BOOST_MATH_CHECK_THROW(boost::math::inverse_gamma_distribution<RealType>(std::numeric_limits<RealType>::infinity(), static_cast<RealType>(1)), std::domain_error); // +infinite mean
BOOST_MATH_CHECK_THROW(boost::math::inverse_gamma_distribution<RealType>(-std::numeric_limits<RealType>::infinity(), static_cast<RealType>(1)), std::domain_error); // -infinite mean
BOOST_MATH_CHECK_THROW(boost::math::inverse_gamma_distribution<RealType>(static_cast<RealType>(0), std::numeric_limits<RealType>::infinity()), std::domain_error); // infinite sd
#endif
}
if (std::numeric_limits<RealType>::has_quiet_NaN)
{
// No longer allow x to be NaN, then these tests should throw.
BOOST_MATH_CHECK_THROW(pdf(ig21, +std::numeric_limits<RealType>::quiet_NaN()), std::domain_error); // x = NaN
BOOST_MATH_CHECK_THROW(cdf(ig21, +std::numeric_limits<RealType>::quiet_NaN()), std::domain_error); // x = NaN
BOOST_MATH_CHECK_THROW(cdf(complement(ig21, +std::numeric_limits<RealType>::quiet_NaN())), std::domain_error); // x = + infinity
BOOST_MATH_CHECK_THROW(quantile(ig21, +std::numeric_limits<RealType>::quiet_NaN()), std::domain_error); // p = + infinity
BOOST_MATH_CHECK_THROW(quantile(complement(ig21, +std::numeric_limits<RealType>::quiet_NaN())), std::domain_error); // p = + infinity
}
// Spot check for pdf using 'naive pdf' function
for(RealType x = 0.5; x < 5; x += 0.5)
{
BOOST_CHECK_CLOSE_FRACTION(
pdf(inverse_gamma_distribution<RealType>(5, 6), x),
naive_pdf(RealType(5), RealType(6), x),
tolerance);
} // Spot checks for parameters:
RealType tol_few_eps = boost::math::tools::epsilon<RealType>() * 5; // 5 eps as a fraction.
inverse_gamma_distribution<RealType> dist51(5, 1);
inverse_gamma_distribution<RealType> dist52(5, 2);
inverse_gamma_distribution<RealType> dist31(3, 1);
inverse_gamma_distribution<RealType> dist111(11, 1);
// 11 mean 0.10000000000000001, variance 0.0011111111111111111, sd 0.033333333333333333
RealType x = static_cast<RealType>(0.125);
using namespace std; // ADL of std names.
using namespace boost::math;
// mean, variance etc
BOOST_CHECK_CLOSE_FRACTION(mean(dist52), static_cast<RealType>(0.5), tol_few_eps);
BOOST_CHECK_CLOSE_FRACTION(mean(dist111), static_cast<RealType>(0.1L), tol_few_eps);
inverse_gamma_distribution<RealType> igamma41(static_cast<RealType>(4.), static_cast<RealType>(1.) );
BOOST_CHECK_CLOSE_FRACTION(mean(igamma41), static_cast<RealType>(0.3333333333333333333333333333333333333333333333333333333L), tol_few_eps);
// variance:
BOOST_CHECK_CLOSE_FRACTION(variance(dist51), static_cast<RealType>(0.0208333333333333333333333333333333333333333333333333L), tol_few_eps);
BOOST_CHECK_CLOSE_FRACTION(variance(dist31), static_cast<RealType>(0.25), tol_few_eps);
BOOST_CHECK_CLOSE_FRACTION(variance(dist111), static_cast<RealType>(0.001111111111111111111111111111111111111111111111111L), tol_few_eps);
// std deviation:
BOOST_CHECK_CLOSE_FRACTION(standard_deviation(dist31), static_cast<RealType>(0.5), tol_few_eps);
BOOST_CHECK_CLOSE_FRACTION(standard_deviation(dist111), static_cast<RealType>(0.0333333333333333333333333333333333333333333333333L), tol_few_eps);
// hazard:
BOOST_CHECK_CLOSE_FRACTION(hazard(dist51, x), pdf(dist51, x) / cdf(complement(dist51, x)), tol_few_eps);
// cumulative hazard:
BOOST_CHECK_CLOSE_FRACTION(chf(dist51, x), -log(cdf(complement(dist51, x))), tol_few_eps);
// coefficient_of_variation:
BOOST_CHECK_CLOSE_FRACTION(coefficient_of_variation(dist51), standard_deviation(dist51) / mean(dist51), tol_few_eps);
// mode:
BOOST_CHECK_CLOSE_FRACTION(mode(dist51), static_cast<RealType>(0.166666666666666666666666666666666666666666666666666L), tol_few_eps);
// median
//BOOST_CHECK_CLOSE_FRACTION(median(dist52), static_cast<RealType>(0), tol_few_eps);
// Useful to have an exact median? Failing that use a loop back test.
BOOST_CHECK_CLOSE_FRACTION(cdf(dist111, median(dist111)), 0.5, tol_few_eps);
// skewness:
BOOST_CHECK_CLOSE_FRACTION(skewness(dist111), static_cast<RealType>(1.5), tol_few_eps);
//kurtosis:
BOOST_CHECK_CLOSE_FRACTION(kurtosis(dist51), static_cast<RealType>(42 + 3), tol_few_eps);
// kurtosis excess:
BOOST_CHECK_CLOSE_FRACTION(kurtosis_excess(dist51), static_cast<RealType>(42), tol_few_eps);
tol_few_eps = boost::math::tools::epsilon<RealType>() * 3; // 3 eps as a percentage.
// Special and limit cases:
if(std::numeric_limits<RealType>::is_specialized)
{
RealType mx = (std::numeric_limits<RealType>::max)();
RealType mi = (std::numeric_limits<RealType>::min)();
BOOST_CHECK_EQUAL(
pdf(inverse_gamma_distribution<RealType>(1),
static_cast<RealType>(mx)), // max()
static_cast<RealType>(0)
);
BOOST_CHECK_EQUAL(
pdf(inverse_gamma_distribution<RealType>(1),
static_cast<RealType>(mi)), // min()
static_cast<RealType>(0)
);
}
BOOST_CHECK_EQUAL(
pdf(inverse_gamma_distribution<RealType>(1), static_cast<RealType>(0)), static_cast<RealType>(0));
BOOST_CHECK_EQUAL(
pdf(inverse_gamma_distribution<RealType>(3), static_cast<RealType>(0))
, static_cast<RealType>(0.0f));
BOOST_CHECK_EQUAL(
cdf(inverse_gamma_distribution<RealType>(1), static_cast<RealType>(0))
, static_cast<RealType>(0.0f));
BOOST_CHECK_EQUAL(
cdf(inverse_gamma_distribution<RealType>(2), static_cast<RealType>(0))
, static_cast<RealType>(0.0f));
BOOST_CHECK_EQUAL(
cdf(inverse_gamma_distribution<RealType>(3), static_cast<RealType>(0))
, static_cast<RealType>(0.0f));
BOOST_CHECK_EQUAL(
cdf(complement(inverse_gamma_distribution<RealType>(1), static_cast<RealType>(0)))
, static_cast<RealType>(1));
BOOST_CHECK_EQUAL(
cdf(complement(inverse_gamma_distribution<RealType>(2), static_cast<RealType>(0)))
, static_cast<RealType>(1));
BOOST_CHECK_EQUAL(
cdf(complement(inverse_gamma_distribution<RealType>(3), static_cast<RealType>(0)))
, static_cast<RealType>(1));
BOOST_MATH_CHECK_THROW(
pdf(
inverse_gamma_distribution<RealType>(static_cast<RealType>(-1)), // shape negative.
static_cast<RealType>(1)), std::domain_error
);
BOOST_MATH_CHECK_THROW(
pdf(
inverse_gamma_distribution<RealType>(static_cast<RealType>(8)),
static_cast<RealType>(-1)), std::domain_error
);
BOOST_MATH_CHECK_THROW(
cdf(
inverse_gamma_distribution<RealType>(static_cast<RealType>(-1)),
static_cast<RealType>(1)), std::domain_error
);
BOOST_MATH_CHECK_THROW(
cdf(
inverse_gamma_distribution<RealType>(static_cast<RealType>(8)),
static_cast<RealType>(-1)), std::domain_error
);
BOOST_MATH_CHECK_THROW(
cdf(complement(
inverse_gamma_distribution<RealType>(static_cast<RealType>(-1)),
static_cast<RealType>(1))), std::domain_error
);
BOOST_MATH_CHECK_THROW(
cdf(complement(
inverse_gamma_distribution<RealType>(static_cast<RealType>(8)),
static_cast<RealType>(-1))), std::domain_error
);
BOOST_MATH_CHECK_THROW(
quantile(
inverse_gamma_distribution<RealType>(static_cast<RealType>(-1)),
static_cast<RealType>(0.5)), std::domain_error
);
BOOST_MATH_CHECK_THROW(
quantile(
inverse_gamma_distribution<RealType>(static_cast<RealType>(8)),
static_cast<RealType>(-1)), std::domain_error
);
BOOST_MATH_CHECK_THROW(
quantile(
inverse_gamma_distribution<RealType>(static_cast<RealType>(8)),
static_cast<RealType>(1.1)), std::domain_error
);
BOOST_MATH_CHECK_THROW(
quantile(complement(
inverse_gamma_distribution<RealType>(static_cast<RealType>(-1)),
static_cast<RealType>(0.5))), std::domain_error
);
BOOST_MATH_CHECK_THROW(
quantile(complement(
inverse_gamma_distribution<RealType>(static_cast<RealType>(8)),
static_cast<RealType>(-1))), std::domain_error
);
BOOST_MATH_CHECK_THROW(
quantile(complement(
inverse_gamma_distribution<RealType>(static_cast<RealType>(8)),
static_cast<RealType>(1.1))), std::domain_error
);
check_out_of_range<inverse_gamma_distribution<RealType> >(1, 1);
} // template <class RealType>void test_spots(RealType)
BOOST_AUTO_TEST_CASE( test_main )
{
BOOST_MATH_CONTROL_FP;
// Check that can generate inverse_gamma distribution using the two convenience methods:
// inverse_gamma_distribution; // with default parameters, shape = 1, scale - 1
using boost::math::inverse_gamma;
inverse_gamma ig2(2.); // Using typedef and shape parameter (and default scale = 1).
BOOST_CHECK_EQUAL(ig2.shape(), 2.); // scale == 2.
BOOST_CHECK_EQUAL(ig2.scale(), 1.); // scale == 1 (default).
inverse_gamma ig; // Using typedef, type double and default values, shape = 1 and scale = 1
// check default is (1, 1)
BOOST_CHECK_EQUAL(ig.shape(), 1.); // shape == 1
BOOST_CHECK_EQUAL(ig.scale(), 1.); // scale == 1
BOOST_CHECK_EQUAL(mode(ig), 0.5); // mode = 1/2
// Used to find some 'exact' values for testing mean, variance ...
//for (int shape = 4; shape < 30; shape++)
// {
// inverse_gamma ig(shape, 1);
// cout.precision(17);
// cout << shape << ' ' << mean(ig) << ' ' << variance(ig) << ' ' << standard_deviation(ig)
// << ' ' << median(ig) << endl;
// }
// and "using boost::math::inverse_gamma_distribution;".
inverse_gamma_distribution<> ig23(2., 3.); // Using default RealType double.
BOOST_CHECK_EQUAL(ig23.shape(), 2.); //
BOOST_CHECK_EQUAL(ig23.scale(), 3.); //
inverse_gamma_distribution<float> igf23(1.f, 2.f); // Using explicit RealType float.
BOOST_CHECK_EQUAL(igf23.shape(), 1.f); //
BOOST_CHECK_EQUAL(igf23.scale(), 2.f); //
// Some tests using default double.
double tol5eps = boost::math::tools::epsilon<double>() * 5; // 5 eps as a fraction.
inverse_gamma_distribution<double> ig102(10., 2.); //
BOOST_CHECK_EQUAL(ig102.shape(), 10.); //
BOOST_CHECK_EQUAL(ig102.scale(), 2.); //
// formatC(SuppDists::dinvGauss(10, 1, 0.5), digits=17)[1] "0.0011774669940754754"
BOOST_CHECK_CLOSE_FRACTION(pdf(ig102, 0.5), 0.1058495335284024, tol5eps);
// formatC(SuppDists::pinvGauss(10, 1, 0.5), digits=17) [1] "0.99681494462166653"
BOOST_CHECK_CLOSE_FRACTION(cdf(ig102, 0.5), 0.99186775720306608, tol5eps);
BOOST_CHECK_CLOSE_FRACTION(quantile(ig102, 0.05), 0.12734622346137681, tol5eps);
BOOST_CHECK_CLOSE_FRACTION(quantile(ig102, 0.5), 0.20685272858879727, tol5eps);
BOOST_CHECK_CLOSE_FRACTION(quantile(ig102, 0.95), 0.36863602680851204, tol5eps);
// Check mean, etc spot values.
inverse_gamma_distribution<double> ig51(5., 1.); // shape = 5, scale = 1
BOOST_CHECK_CLOSE_FRACTION(mean(ig51), 0.25, tol5eps);
BOOST_CHECK_CLOSE_FRACTION(variance(ig51), 0.0208333333333333333333333333333333333333333, tol5eps);
BOOST_CHECK_CLOSE_FRACTION(skewness(ig51), 2 * std::sqrt(3.), tol5eps);
BOOST_CHECK_CLOSE_FRACTION(kurtosis_excess(ig51), 42, tol5eps);
// mode and median
inverse_gamma_distribution<double> ig21(1., 2.);
BOOST_CHECK_CLOSE_FRACTION(mode(ig21), 1, tol5eps);
BOOST_CHECK_CLOSE_FRACTION(median(ig21), 2.8853900817779268, tol5eps);
BOOST_CHECK_CLOSE_FRACTION(quantile(ig21, 0.5), 2.8853900817779268, tol5eps);
BOOST_CHECK_CLOSE_FRACTION(cdf(ig21, median(ig21)), 0.5, tol5eps);
// Check throws from bad parameters.
inverse_gamma ig051(0.5, 1.); // shape < 1, so wrong for mean.
BOOST_MATH_CHECK_THROW(mean(ig051), std::domain_error);
inverse_gamma ig191(1.9999, 1.); // shape < 2, so wrong for variance.
BOOST_MATH_CHECK_THROW(variance(ig191), std::domain_error);
inverse_gamma ig291(2.9999, 1.); // shape < 3, so wrong for skewness.
BOOST_MATH_CHECK_THROW(skewness(ig291), std::domain_error);
inverse_gamma ig391(3.9999, 1.); // shape < 1, so wrong for kurtosis and kurtosis_excess.
BOOST_MATH_CHECK_THROW(kurtosis(ig391), std::domain_error);
BOOST_MATH_CHECK_THROW(kurtosis_excess(ig391), std::domain_error);
// Basic sanity-check spot values.
// (Parameter value, arbitrarily zero, only communicates the floating point type).
test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 %
test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 %
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_spots(0.0L); // Test long double.
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
#endif
#else
std::cout << "<note>The long double tests have been disabled on this platform "
"either because the long double overloads of the usual math functions are "
"not available at all, or because they are too inaccurate for these tests "
"to pass.</note>" << std::endl;
#endif
} // BOOST_AUTO_TEST_CASE( test_main )
/*
Output:
------ Build started: Project: test_inverse_gamma_distribution, Configuration: Release Win32 ------
test_inverse_gamma_distribution.cpp
Generating code
Finished generating code
test_inverse_gamma_distribution.vcxproj -> J:\Cpp\MathToolkit\test\Math_test\Release\test_inverse_gamma_distribution.exe
Running 1 test case...
Tolerance = 0.0001%.
Tolerance = 0.0001%.
Tolerance = 0.0001%.
Tolerance = 0.0001%.
*** No errors detected
========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========
*/