// test_beta_dist.cpp // Copyright John Maddock 2006. // Copyright Paul A. Bristow 2006. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) // Basic sanity tests for the beta Distribution. // http://members.aol.com/iandjmsmith/BETAEX.HTM beta distribution calculator // Appreas to be a 64-bit calculator showing 17 decimal digit (last is noisy). // Similar to mathCAD? // http://www.ausvet.com.au/pprev/content.php?page=PPscript // mode 0.75 5/95% 0.9 alpha 7.39 beta 3.13 // http://www.nuhertz.com/statmat/distributions.html#Beta // Pretty graphs and explanations for most distributions. // http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp // provided 40 decimal digits accuracy incomplete beta aka beta regularized == cdf #define BOOST_MATH_THROW_ON_DOMAIN_ERROR #ifdef _MSC_VER # pragma warning(disable: 4127) // conditional expression is constant. # pragma warning(disable: 4100) // unreferenced formal parameter. # pragma warning(disable: 4512) // assignment operator could not be generated. #endif #include // for beta_distribution using boost::math::beta_distribution; using boost::math::beta; #include // for real_concept using ::boost::math::concepts::real_concept; #include // for test_main #include // for BOOST_CHECK_CLOSE_FRACTION #include using std::cout; using std::endl; #include using std::numeric_limits; template void test_spot( RealType a, // alpha a RealType b, // beta b RealType x, // Probability RealType P, // CDF of beta(a, b) RealType Q, // Complement of CDF RealType tol) // Test tolerance. { boost::math::beta_distribution abeta(a, b); BOOST_CHECK_CLOSE_FRACTION(cdf(abeta, x), P, tol); if((P < 0.99) && (Q < 0.99)) { // We can only check this if P is not too close to 1, // so that we can guarantee that Q is free of error, // (and similarly for Q) BOOST_CHECK_CLOSE_FRACTION( cdf(complement(abeta, x)), Q, tol); if(k != 0) { BOOST_CHECK_CLOSE_FRACTION( quantile(abeta, P), x, tol); } else { // Just check quantile is very small: if((std::numeric_limits::max_exponent <= std::numeric_limits::max_exponent) && (boost::is_floating_point::value)) { // Limit where this is checked: if exponent range is very large we may // run out of iterations in our root finding algorithm. BOOST_CHECK(quantile(abeta, P) < boost::math::tools::epsilon() * 10); } } // if k if(x != 0) { BOOST_CHECK_CLOSE_FRACTION(quantile(complement(abeta, Q)), x, tol); } else { // Just check quantile is very small: if((std::numeric_limits::max_exponent <= std::numeric_limits::max_exponent) && (boost::is_floating_point::value)) { // Limit where this is checked: if exponent range is very large we may // run out of iterations in our root finding algorithm. BOOST_CHECK(quantile(complement(abeta, Q)) < boost::math::tools::epsilon() * 10); } } // if x // Estimate alpha: BOOST_CHECK_CLOSE_FRACTION( beta_distribution::estimate_alpha(N, x, Q), p, tol); BOOST_CHECK_CLOSE_FRACTION( beta_distribution::estimate_beta(N, x, P), p, tol); // Estimate sample alpha and beta: BOOST_CHECK_CLOSE_FRACTION( beta_distribution::estimate_alpha( k, p, P), N, tol); BOOST_CHECK_CLOSE_FRACTION( beta_distribution::estimate_alpha( boost::math::complement(k, p, Q)), N, tol); BOOST_CHECK_CLOSE_FRACTION( beta_distribution::estimate_beta( k, p, P), N, tol); BOOST_CHECK_CLOSE_FRACTION( beta_distribution::estimate_beta( boost::math::complement(k, p, Q)), N, tol); } // if((P < 0.99) && (Q < 0.99) } // template void test_spot template // Any floating-point type RealType. void test_spots(RealType) { // Basic sanity checks with 'known good' values. // MathCAD test data is to double precision only, // so set tolerance to 100 eps expressed as a fraction, or // 100 eps of type double expressed as a fraction, // whichever is the larger. RealType tolerance = (std::max) (boost::math::tools::epsilon(), static_cast(std::numeric_limits::epsilon())); tolerance *= 1000; // Note: NO * 100 because is fraction, NOT %. cout << "Tolerance = " << tolerance * 100 << "%." << endl; //RealType teneps = boost::math::tools::epsilon() * 10; // Sources of spot test values: // MathCAD defines dbeta(x, s1, s2) pdf, s1 == alpha, s2 = beta, x = x in Wolfram // pbeta(x, s1, s2) cdf and qbeta(x, s1, s2) inverse of cdf // returns pr(X ,= x) when random variable X // has the beta distribution with parameters s1)alpha) and s2(beta). // s1 > 0 and s2 >0 and 0 < x < 1 (but allows x == 0! and x == 1!) // dbeta(0,1,1) = 0 // dbeta(0.5,1,1) = 1 using boost::math::beta_distribution; using ::boost::math::cdf; using ::boost::math::pdf; // Tests that should throw: BOOST_CHECK_THROW(mode(beta_distribution(static_cast(1), static_cast(1))), std::domain_error); // mode is undefined, and throws domain_error! BOOST_CHECK_THROW( // For various bad arguments. pdf( beta_distribution(static_cast(-1), static_cast(1)), // bad alpha < 0. static_cast(1)), std::domain_error); BOOST_CHECK_THROW( pdf( beta_distribution(static_cast(0), static_cast(1)), // bad alpha == 0. static_cast(1)), std::domain_error); BOOST_CHECK_THROW( pdf( beta_distribution(static_cast(1), static_cast(0)), // bad beta == 0. static_cast(1)), std::domain_error); BOOST_CHECK_THROW( pdf( beta_distribution(static_cast(1), static_cast(-1)), // bad beta < 0. static_cast(1)), std::domain_error); BOOST_CHECK_THROW( pdf( beta_distribution(static_cast(1), static_cast(1)), // bad x < 0. static_cast(-1)), std::domain_error); BOOST_CHECK_THROW( pdf( beta_distribution(static_cast(1), static_cast(1)), // bad x > 1. static_cast(999)), std::domain_error); // Some exact pdf values. BOOST_CHECK_EQUAL( // a = b = 1 is uniform distribution. pdf(beta_distribution(static_cast(1), static_cast(1)), static_cast(1)), // x static_cast(1)); BOOST_CHECK_EQUAL( pdf(beta_distribution(static_cast(1), static_cast(1)), static_cast(0)), // x static_cast(1)); BOOST_CHECK_EQUAL( pdf(beta_distribution(static_cast(1), static_cast(1)), static_cast(0.5)), // x static_cast(1)); BOOST_CHECK_EQUAL( beta_distribution(static_cast(1), static_cast(1)).alpha(), static_cast(1) ); // BOOST_CHECK_EQUAL( mean(beta_distribution(static_cast(1), static_cast(1))), static_cast(0.5) ); // Exact one half. BOOST_CHECK_CLOSE_FRACTION( pdf(beta_distribution(static_cast(2), static_cast(2)), static_cast(0.5)), // x static_cast(1.5), // Exactly 3/2 tolerance); BOOST_CHECK_CLOSE_FRACTION( pdf(beta_distribution(static_cast(2), static_cast(2)), static_cast(0.5)), // x static_cast(1.5), // Exactly 3/2 tolerance); // CDF BOOST_CHECK_CLOSE_FRACTION( cdf(beta_distribution(static_cast(2), static_cast(2)), static_cast(0.1)), // x static_cast(0.02800000000000000000000000000000000000000), // Seems exact. // http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=BetaRegularized&ptype=0&z=0.1&a=2&b=2&digits=40 tolerance); BOOST_CHECK_CLOSE_FRACTION( cdf(beta_distribution(static_cast(2), static_cast(2)), static_cast(0.0001)), // x static_cast(2.999800000000000000000000000000000000000e-8), // http://members.aol.com/iandjmsmith/BETAEX.HTM 2.9998000000004 // http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=BetaRegularized&ptype=0&z=0.0001&a=2&b=2&digits=40 tolerance); BOOST_CHECK_CLOSE_FRACTION( pdf(beta_distribution(static_cast(2), static_cast(2)), static_cast(0.0001)), // x static_cast(0.0005999400000000004), // http://members.aol.com/iandjmsmith/BETAEX.HTM tolerance); BOOST_CHECK_CLOSE_FRACTION( cdf(beta_distribution(static_cast(2), static_cast(2)), static_cast(0.9999)), // x static_cast(0.999999970002), // http://members.aol.com/iandjmsmith/BETAEX.HTM // Wolfram 0.9999999700020000000000000000000000000000 tolerance); BOOST_CHECK_CLOSE_FRACTION( cdf(beta_distribution(static_cast(0.5), static_cast(2)), static_cast(0.9)), // x static_cast(0.9961174629530394895796514664963063381217), // Wolfram tolerance); BOOST_CHECK_CLOSE_FRACTION( cdf(beta_distribution(static_cast(0.5), static_cast(0.5)), static_cast(0.1)), // x static_cast(0.2048327646991334516491978475505189480977), // Wolfram tolerance); BOOST_CHECK_CLOSE_FRACTION( cdf(beta_distribution(static_cast(0.5), static_cast(0.5)), static_cast(0.9)), // x static_cast(0.7951672353008665483508021524494810519023), // Wolfram tolerance); BOOST_CHECK_CLOSE_FRACTION( quantile(beta_distribution(static_cast(0.5), static_cast(0.5)), static_cast(0.7951672353008665483508021524494810519023)), // x static_cast(0.9), // Wolfram tolerance); BOOST_CHECK_CLOSE_FRACTION( cdf(beta_distribution(static_cast(0.5), static_cast(0.5)), static_cast(0.6)), // x static_cast(0.5640942168489749316118742861695149357858), // Wolfram tolerance); BOOST_CHECK_CLOSE_FRACTION( quantile(beta_distribution(static_cast(0.5), static_cast(0.5)), static_cast(0.5640942168489749316118742861695149357858)), // x static_cast(0.6), // Wolfram tolerance); BOOST_CHECK_CLOSE_FRACTION( cdf(beta_distribution(static_cast(2), static_cast(0.5)), static_cast(0.6)), // x static_cast(0.1778078083562213736802876784474931812329), // Wolfram tolerance); BOOST_CHECK_CLOSE_FRACTION( quantile(beta_distribution(static_cast(2), static_cast(0.5)), static_cast(0.1778078083562213736802876784474931812329)), // x static_cast(0.6), // Wolfram tolerance); // gives BOOST_CHECK_CLOSE_FRACTION( cdf(beta_distribution(static_cast(1), static_cast(1)), static_cast(0.1)), // x static_cast(0.1), // 0.1000000000000000000000000000000000000000 // Wolfram tolerance); BOOST_CHECK_CLOSE_FRACTION( quantile(beta_distribution(static_cast(1), static_cast(1)), static_cast(0.1)), // x static_cast(0.1), // 0.1000000000000000000000000000000000000000 // Wolfram tolerance); BOOST_CHECK_CLOSE_FRACTION( cdf(complement(beta_distribution(static_cast(0.5), static_cast(0.5)), static_cast(0.1))), // complement of x static_cast(0.7951672353008665483508021524494810519023), // Wolfram tolerance); BOOST_CHECK_CLOSE_FRACTION( quantile(beta_distribution(static_cast(2), static_cast(2)), static_cast(0.0280000000000000000000000000000000000)), // x static_cast(0.1), // Wolfram tolerance); BOOST_CHECK_CLOSE_FRACTION( cdf(complement(beta_distribution(static_cast(2), static_cast(2)), static_cast(0.1))), // x static_cast(0.9720000000000000000000000000000000000000), // Exact. // Wolfram tolerance); BOOST_CHECK_CLOSE_FRACTION( pdf(beta_distribution(static_cast(2), static_cast(2)), static_cast(0.9999)), // x static_cast(0.0005999399999999344), // http://members.aol.com/iandjmsmith/BETAEX.HTM tolerance*10); // Note less accurate. } // template void test_spots(RealType) int test_main(int, char* []) { // Check that can generate beta distribution using one convenience methods: beta_distribution<> mybeta11(1., 1.); // Using default RealType double. // but that //boost::math::beta mybeta1(1., 1.); // Using typedef fails. // error C2039: 'beta' : is not a member of 'boost::math' // Some simple checks using double only. BOOST_CHECK_EQUAL(mybeta11.alpha(), 1); // BOOST_CHECK_EQUAL(mybeta11.beta(), 1); BOOST_CHECK_EQUAL(mean(mybeta11), 0.5); // 1 / (1 + 1) = 1/2 exactly BOOST_CHECK_THROW(mode(mybeta11), std::domain_error); beta_distribution<> mybeta22(2., 2.); // pdf is dome shape. BOOST_CHECK_EQUAL(mode(mybeta22), 0.5); // 2-1 / (2+2-2) = 1/2 exactly. beta_distribution<> mybetaH2(0.5, 2.); // // Check a few values using double. BOOST_CHECK_EQUAL(pdf(mybeta11, 1), 1); // is uniform unity over 0 to 1, BOOST_CHECK_EQUAL(pdf(mybeta11, 0), 1); // including zero and unity. BOOST_CHECK_EQUAL(pdf(mybeta11, 0.5), 1); BOOST_CHECK_EQUAL(pdf(mybeta11, 0.0001), 1); BOOST_CHECK_EQUAL(pdf(mybeta11, 0.9999), 1); BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta11, 0.1), 0.1, std::numeric_limits::epsilon()); BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta11, 0.5), 0.5, std::numeric_limits::epsilon()); BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta11, 0.9), 0.9, std::numeric_limits::epsilon()); BOOST_CHECK_EQUAL(cdf(mybeta11, 1), 1.); // Exact unity expected. double tol = std::numeric_limits::epsilon() * 10; BOOST_CHECK_EQUAL(pdf(mybeta22, 1), 0); // is dome shape. BOOST_CHECK_EQUAL(pdf(mybeta22, 0), 0); BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta22, 0.5), 1.5, tol); // top of dome, expect exactly 3/2. BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta22, 0.0001), 5.9994000000000E-4, tol); BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta22, 0.9999), 5.9994000000000E-4, tol*50); BOOST_CHECK_EQUAL(cdf(mybeta22, 0.), 0); // cdf is a curved line from 0 to 1. BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.1), 0.028000000000000, tol); BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.5), 0.5, tol); BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.9), 0.972000000000000, tol); BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.0001), 2.999800000000000000000000000000000000000E-8, tol); BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.001), 2.998000000000000000000000000000000000000E-6, tol); BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.01), 0.0002980000000000000000000000000000000000000, tol); BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.1), 0.02800000000000000000000000000000000000000, tol); // exact BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.99), 0.9997020000000000000000000000000000000000, tol); BOOST_CHECK_EQUAL(cdf(mybeta22, 1), 1.); // Exact unity expected. // Complement BOOST_CHECK_CLOSE_FRACTION(cdf(complement(mybeta22, 0.9)), 0.028000000000000, tol); // quantile. BOOST_CHECK_CLOSE_FRACTION(quantile(mybeta22, 0.028), 0.1, tol); BOOST_CHECK_CLOSE_FRACTION(quantile(complement(mybeta22, 1 - 0.028)), 0.1, tol); BOOST_CHECK_EQUAL(kurtosis(mybeta11), 3+ kurtosis_excess(mybeta11)); // Check kurtosis_excess = kurtosis - 3; BOOST_CHECK_CLOSE_FRACTION(variance(mybeta22), 0.05, tol); BOOST_CHECK_CLOSE_FRACTION(mode(mybeta22), 0.5, tol); BOOST_CHECK_CLOSE_FRACTION(mean(mybeta22), 0.5, tol); BOOST_CHECK_EQUAL(beta_distribution::estimate_alpha(mean(mybeta22), variance(mybeta22), 0.5), mybeta22.alpha()); // mean, variance, probability. BOOST_CHECK_EQUAL(beta_distribution::estimate_beta(mean(mybeta22), variance(mybeta22), 0.5), mybeta22.beta());// mean, variance, probability. using boost::math::ibeta_inva; using boost::math::ibeta_invb; cout << beta_distribution::estimate_beta(mean(mybeta22), variance(mybeta22), 0.5) << endl; // 2 cout << beta_distribution::estimate_beta(mean(mybeta22), variance(mybeta22), 0.5) << endl; // 2 cout << ibeta_inva(mean(mybeta22), variance(mybeta22), 0.5) << endl; // 0.167502 cout << ibeta_invb(mean(mybeta22), variance(mybeta22), 0.5) << endl; // 4.67659 // Basic sanity-check spot values. #ifdef BOOST_MATH_THROW_ON_DOMAIN_ERROR cout << "BOOST_MATH_THROW_ON_DOMAIN_ERROR" << " is defined to throw on domain error." << endl; #else cout << "BOOST_MATH_THROW_ON_DOMAIN_ERROR" << " is NOT defined, so NO throw on domain error." << endl; #endif // (Parameter value, arbitrarily zero, only communicates the floating point type). test_spots(0.0F); // Test float. test_spots(0.0); // Test double. test_spots(0.0L); // Test long double. #if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582)) test_spots(boost::math::concepts::real_concept(0.)); // Test real concept. #endif return 0; } // int test_main(int, char* []) /* Output is: ------ Build started: Project: test_beta_dist, Configuration: Debug Win32 ------ Compiling... test_beta_dist.cpp Linking... Autorun "i:\boost-06-05-03-1300\libs\math\test\Math_test\debug\test_beta_dist.exe" Running 1 test case... BOOST_MATH_THROW_ON_DOMAIN_ERROR is defined to throw on domain error. *** No errors detected Build Time 0:05 Build log was saved at "file://i:\boost-06-05-03-1300\libs\math\test\Math_test\test_beta_dist\Debug\BuildLog.htm" test_beta_dist - 0 error(s), 0 warning(s) ========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ========== */ /* Park // These test quantiles and complements as well. test_spot( static_cast(500), // Sample size, N static_cast(30), // Number of successes, k static_cast(0.05), // Probability of success, p static_cast(0.869147702104609), // Probability of result (CDF), P static_cast(1 - 0.869147702104609), // Q = 1 - P tolerance); test_spot( static_cast(500), // Sample size, N static_cast(250), // Number of successes, k static_cast(0.05), // Probability of success, p static_cast(1), // Probability of result (CDF), P static_cast(0), // Q = 1 - P tolerance); test_spot( static_cast(500), // Sample size, N static_cast(470), // Number of successes, k static_cast(0.95), // Probability of success, p static_cast(0.176470742656766), // Probability of result (CDF), P static_cast(1 - 0.176470742656766), // Q = 1 - P tolerance * 10); // Note higher tolerance on this test! test_spot( static_cast(500), // Sample size, N static_cast(400), // Number of successes, k static_cast(0.05), // Probability of success, p static_cast(1), // Probability of result (CDF), P static_cast(0), // Q = 1 - P tolerance); test_spot( static_cast(500), // Sample size, N static_cast(400), // Number of successes, k static_cast(0.9), // Probability of success, p static_cast(1.80180425681923E-11), // Probability of result (CDF), P static_cast(1 - 1.80180425681923E-11), // Q = 1 - P tolerance); test_spot( static_cast(500), // Sample size, N static_cast(5), // Number of successes, k static_cast(0.05), // Probability of success, p static_cast(9.181808267643E-7), // Probability of result (CDF), P static_cast(1 - 9.181808267643E-7), // Q = 1 - P tolerance); test_spot( static_cast(2), // Sample size, N static_cast(1), // Number of successes, k static_cast(0.5), // Probability of success, p static_cast(0.75), // Probability of result (CDF), P static_cast(0.25), // Q = 1 - P tolerance); test_spot( static_cast(8), // Sample size, N static_cast(3), // Number of successes, k static_cast(0.25), // Probability of success, p static_cast(0.8861846923828125), // Probability of result (CDF), P static_cast(1 - 0.8861846923828125), // Q = 1 - P tolerance); test_spot( static_cast(8), // Sample size, N static_cast(0), // Number of successes, k static_cast(0.25), // Probability of success, p static_cast(0.1001129150390625), // Probability of result (CDF), P static_cast(1 - 0.1001129150390625), // Q = 1 - P tolerance); test_spot( static_cast(8), // Sample size, N static_cast(1), // Number of successes, k static_cast(0.25), // Probability of success, p static_cast(0.36708068847656244), // Probability of result (CDF), P static_cast(1 - 0.36708068847656244), // Q = 1 - P tolerance); test_spot( static_cast(8), // Sample size, N static_cast(4), // Number of successes, k static_cast(0.25), // Probability of success, p static_cast(0.9727020263671875), // Probability of result (CDF), P static_cast(1 - 0.9727020263671875), // Q = 1 - P tolerance); test_spot( static_cast(8), // Sample size, N static_cast(7), // Number of successes, k static_cast(0.25), // Probability of success, p static_cast(0.9999847412109375), // Probability of result (CDF), P static_cast(1 - 0.9999847412109375), // Q = 1 - P tolerance); // Tests on PDF follow: BOOST_CHECK_CLOSE_FRACTION( pdf(beta_distribution(static_cast(20), static_cast(0.75)), static_cast(10)), // k. static_cast(0.00992227527967770583927631378173), // 0.00992227527967770583927631378173 tolerance); BOOST_CHECK_CLOSE_FRACTION( pdf(beta_distribution(static_cast(20), static_cast(0.5)), static_cast(10)), // k. static_cast(0.17619705200195312500000000000000000000), // get k=10 0.049611376398388612 p = 0.25 tolerance); BOOST_CHECK_CLOSE_FRACTION( pdf(beta_distribution(static_cast(20), static_cast(0.25)), static_cast(10)), // k. static_cast(0.00992227527967770583927631378173), // k=10 p = 0.25 tolerance); BOOST_CHECK_CLOSE_FRACTION( // k = 0 use different formula - only exp so more accurate. pdf(beta_distribution(static_cast(20), static_cast(0.25)), static_cast(0)), // k. static_cast(0.00317121193893399322405457496643), // k=0 p = 0.25 tolerance); BOOST_CHECK_CLOSE_FRACTION( // k = 20 use different formula - only exp so more accurate. pdf(beta_distribution(static_cast(20), static_cast(0.25)), static_cast(20)), // k == n. static_cast(0.00000000000090949470177292823791), // k=20 p = 0.25 tolerance); BOOST_CHECK_CLOSE_FRACTION( // k = 1. pdf(beta_distribution(static_cast(20), static_cast(0.25)), static_cast(1)), // k. static_cast(0.02114141292622662149369716644287), // k=1 p = 0.25 tolerance); // Some exact (probably) values. BOOST_CHECK_CLOSE_FRACTION( pdf(beta_distribution(static_cast(8), static_cast(0.25)), static_cast(0)), // k. static_cast(0.10011291503906250000000000000000), // k=0 p = 0.25 tolerance); BOOST_CHECK_CLOSE_FRACTION( // k = 1. pdf(beta_distribution(static_cast(8), static_cast(0.25)), static_cast(1)), // k. static_cast(0.26696777343750000000000000000000), // k=1 p = 0.25 tolerance); BOOST_CHECK_CLOSE_FRACTION( // k = 2. pdf(beta_distribution(static_cast(8), static_cast(0.25)), static_cast(2)), // k. static_cast(0.31146240234375000000000000000000), // k=2 p = 0.25 tolerance); BOOST_CHECK_CLOSE_FRACTION( // k = 3. pdf(beta_distribution(static_cast(8), static_cast(0.25)), static_cast(3)), // k. static_cast(0.20764160156250000000000000000000), // k=3 p = 0.25 tolerance); BOOST_CHECK_CLOSE_FRACTION( // k = 7. pdf(beta_distribution(static_cast(8), static_cast(0.25)), static_cast(7)), // k. static_cast(0.00036621093750000000000000000000), // k=7 p = 0.25 tolerance); BOOST_CHECK_CLOSE_FRACTION( // k = 8. pdf(beta_distribution(static_cast(8), static_cast(0.25)), static_cast(8)), // k = n. static_cast(0.00001525878906250000000000000000), // k=8 p = 0.25 tolerance); RealType tol2 = boost::math::tools::epsilon() * 5 * 100; // 5 eps as a persent beta_distribution dist(static_cast(8), static_cast(0.25)); RealType x = static_cast(0.125); using namespace std; // ADL of std names. // mean: BOOST_CHECK_CLOSE_FRACTION( mean(dist) , static_cast(8 * 0.25), tol2); // variance: BOOST_CHECK_CLOSE_FRACTION( variance(dist) , static_cast(8 * 0.25 * 0.75), tol2); // std deviation: BOOST_CHECK_CLOSE_FRACTION( standard_deviation(dist) , static_cast(sqrt(8 * 0.25L * 0.75L)), tol2); // hazard: BOOST_CHECK_CLOSE_FRACTION( hazard(dist, x) , pdf(dist, x) / cdf(complement(dist, x)), tol2); // cumulative hazard: BOOST_CHECK_CLOSE_FRACTION( chf(dist, x) , -log(cdf(complement(dist, x))), tol2); // coefficient_of_variation: BOOST_CHECK_CLOSE_FRACTION( coefficient_of_variation(dist) , standard_deviation(dist) / mean(dist), tol2); // mode: BOOST_CHECK_CLOSE_FRACTION( mode(dist) , static_cast(std::floor(9 * 0.25)), tol2); // skewness: BOOST_CHECK_CLOSE_FRACTION( skewness(dist) , static_cast(0.40824829046386301636621401245098L), tol2); // kurtosis: BOOST_CHECK_CLOSE_FRACTION( kurtosis(dist) , static_cast(2.9166666666666666666666666666667L), tol2); // kurtosis excess: BOOST_CHECK_CLOSE_FRACTION( kurtosis_excess(dist) , static_cast(-0.083333333333333333333333333333333L), tol2); // special cases for PDF: BOOST_CHECK_EQUAL( pdf( beta_distribution(static_cast(8), static_cast(0)), static_cast(0)), static_cast(1) ); BOOST_CHECK_EQUAL( pdf( beta_distribution(static_cast(8), static_cast(0)), static_cast(0.0001)), static_cast(0) ); BOOST_CHECK_EQUAL( pdf( beta_distribution(static_cast(8), static_cast(1)), static_cast(0.001)), static_cast(0) ); BOOST_CHECK_EQUAL( pdf( beta_distribution(static_cast(8), static_cast(1)), static_cast(8)), static_cast(1) ); BOOST_CHECK_EQUAL( pdf( beta_distribution(static_cast(0), static_cast(0.25)), static_cast(0)), static_cast(1) ); BOOST_CHECK_THROW( pdf( beta_distribution(static_cast(-1), static_cast(0.25)), static_cast(0)), std::domain_error ); BOOST_CHECK_THROW( pdf( beta_distribution(static_cast(8), static_cast(-0.25)), static_cast(0)), std::domain_error ); BOOST_CHECK_THROW( pdf( beta_distribution(static_cast(8), static_cast(1.25)), static_cast(0)), std::domain_error ); BOOST_CHECK_THROW( pdf( beta_distribution(static_cast(8), static_cast(0.25)), static_cast(-1)), std::domain_error ); BOOST_CHECK_THROW( pdf( beta_distribution(static_cast(8), static_cast(0.25)), static_cast(9)), std::domain_error ); BOOST_CHECK_THROW( cdf( beta_distribution(static_cast(8), static_cast(0.25)), static_cast(-1)), std::domain_error ); BOOST_CHECK_THROW( cdf( beta_distribution(static_cast(8), static_cast(0.25)), static_cast(9)), std::domain_error ); BOOST_CHECK_THROW( cdf( beta_distribution(static_cast(8), static_cast(-0.25)), static_cast(0)), std::domain_error ); BOOST_CHECK_THROW( cdf( beta_distribution(static_cast(8), static_cast(1.25)), static_cast(0)), std::domain_error ); BOOST_CHECK_THROW( quantile( beta_distribution(static_cast(8), static_cast(-0.25)), static_cast(0)), std::domain_error ); BOOST_CHECK_THROW( quantile( beta_distribution(static_cast(8), static_cast(1.25)), static_cast(0)), std::domain_error ); BOOST_CHECK_EQUAL( cdf( beta_distribution(static_cast(8), static_cast(0.25)), static_cast(8)), static_cast(1) ); BOOST_CHECK_EQUAL( cdf( beta_distribution(static_cast(8), static_cast(0)), static_cast(7)), static_cast(1) ); BOOST_CHECK_EQUAL( cdf( beta_distribution(static_cast(8), static_cast(1)), static_cast(7)), static_cast(0) ); */