// test_nc_t.cpp // Copyright John Maddock 2008. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) #include #ifdef _MSC_VER #pragma warning (disable:4127 4512) #endif #if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT) # define TEST_FLOAT # define TEST_DOUBLE # define TEST_LDOUBLE # define TEST_REAL_CONCEPT #endif #include // for real_concept #include // for chi_squared_distribution #include // for test_main #include #include #include // for BOOST_CHECK_CLOSE #include "functor.hpp" #include "handle_test_result.hpp" #include using std::cout; using std::endl; #include using std::numeric_limits; #define BOOST_CHECK_CLOSE_EX(a, b, prec, i) \ {\ unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\ BOOST_CHECK_CLOSE(a, b, prec); \ if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\ {\ std::cerr << "Failure was at row " << i << std::endl;\ std::cerr << std::setprecision(35); \ std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\ std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\ }\ } #define BOOST_CHECK_EX(a, i) \ {\ unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\ BOOST_CHECK(a); \ if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\ {\ std::cerr << "Failure was at row " << i << std::endl;\ std::cerr << std::setprecision(35); \ std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\ std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\ }\ } void expected_results() { // // Define the max and mean errors expected for // various compilers and platforms. // const char* largest_type; #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS if(boost::math::policies::digits >() == boost::math::policies::digits >()) { largest_type = "(long\\s+)?double|real_concept"; } else { largest_type = "long double|real_concept"; } #else largest_type = "(long\\s+)?double|real_concept"; #endif // // Catch all cases come last: // add_expected_result( "[^|]*", // compiler "[^|]*", // stdlib "[^|]*", // platform "real_concept", // test type(s) "[^|]*", // test data group "[^|]*", 300000, 100000); // test function add_expected_result( "[^|]*", // compiler "[^|]*", // stdlib "[^|]*", // platform largest_type, // test type(s) "[^|]*", // test data group "[^|]*", 250, 50); // test function // // Finish off by printing out the compiler/stdlib/platform names, // we do this to make it easier to mark up expected error rates. // std::cout << "Tests run with " << BOOST_COMPILER << ", " << BOOST_STDLIB << ", " << BOOST_PLATFORM << std::endl; } template RealType naive_pdf(RealType v, RealType delta, RealType x) { } template RealType naive_mean(RealType v, RealType delta) { using boost::math::tgamma; return delta * sqrt(v / 2) * tgamma((v-1)/2) / tgamma(v/2); } float naive_mean(float v, float delta) { return (float)naive_mean((double)v, (double)delta); } template RealType naive_variance(RealType v, RealType delta) { using boost::math::tgamma; RealType r = tgamma((v-1)/2) / tgamma(v/2); r *= r; r *= -delta * delta * v / 2; r += (1 + delta * delta) * v / (v - 2); return r; } float naive_variance(float v, float delta) { return (float)naive_variance((double)v, (double)delta); } template RealType naive_skewness(RealType v, RealType delta) { using boost::math::tgamma; RealType tgr = tgamma((v-1)/2) / tgamma(v / 2); RealType r = delta * sqrt(v) * tgamma((v-1)/2) * (v * (-3 + delta * delta + 2 * v) / ((-3 + v) * (-2 + v)) - 2 * ((1 + delta * delta) * v / (-2 + v) - delta * delta * v * tgr * tgr / 2)); r /= boost::math::constants::root_two() * pow(((1+delta*delta) * v / (-2+v) - delta*delta*v*tgr*tgr/2), RealType(1.5f)) * tgamma(v/2); return r; } float naive_skewness(float v, float delta) { return (float)naive_skewness((double)v, (double)delta); } template RealType naive_kurtosis_excess(RealType v, RealType delta) { using boost::math::tgamma; RealType tgr = tgamma((v-1)/2) / tgamma(v / 2); RealType r = -delta * delta * v * tgr * tgr / 2; r *= v * (delta * delta * (1 + v) + 3 * (-5 + 3 * v)) / ((-3 + v)*(-2+v)) - 3 * ((1 + delta * delta) * v / (-2 + v) - delta * delta * v * tgr * tgr / 2); r += (3 + 6 * delta * delta + delta * delta * delta * delta)* v * v / ((-4+v) * (-2+v)); r /= (1+delta*delta)*v / (-2+v) - delta*delta*v *tgr*tgr/2; r /= (1+delta*delta)*v / (-2+v) - delta*delta*v *tgr*tgr/2; return r; } float naive_kurtosis_excess(float v, float delta) { return (float)naive_kurtosis_excess((double)v, (double)delta); } template void test_spot( RealType df, // Degrees of freedom RealType ncp, // non-centrality param RealType t, // T statistic RealType P, // CDF RealType Q, // Complement of CDF RealType tol) // Test tolerance { boost::math::non_central_t_distribution dist(df, ncp); BOOST_CHECK_CLOSE( cdf(dist, t), P, tol); try{ BOOST_CHECK_CLOSE( mean(dist), naive_mean(df, ncp), tol); BOOST_CHECK_CLOSE( variance(dist), naive_variance(df, ncp), tol); BOOST_CHECK_CLOSE( skewness(dist), naive_skewness(df, ncp), tol * 10); BOOST_CHECK_CLOSE( kurtosis_excess(dist), naive_kurtosis_excess(df, ncp), tol * 50); BOOST_CHECK_CLOSE( kurtosis(dist), 3 + naive_kurtosis_excess(df, ncp), tol * 50); } catch(const std::domain_error&) { } /* BOOST_CHECK_CLOSE( pdf(dist, t), naive_pdf(dist.degrees_of_freedom(), ncp, t), tol * 50); */ if((P < 0.99) && (Q < 0.99)) { // // We can only check this if P is not too close to 1, // so that we can guarentee Q is reasonably free of error: // BOOST_CHECK_CLOSE( cdf(complement(dist, t)), Q, tol); BOOST_CHECK_CLOSE( quantile(dist, P), t, tol * 10); BOOST_CHECK_CLOSE( quantile(complement(dist, Q)), t, tol * 10); /* BOOST_CHECK_CLOSE( dist.find_degrees_of_freedom(ncp, t, P), df, tol * 10); BOOST_CHECK_CLOSE( dist.find_degrees_of_freedom(boost::math::complement(ncp, t, Q)), df, tol * 10); BOOST_CHECK_CLOSE( dist.find_non_centrality(df, t, P), ncp, tol * 10); BOOST_CHECK_CLOSE( dist.find_non_centrality(boost::math::complement(df, t, Q)), ncp, tol * 10); */ } } template // Any floating-point type RealType. void test_spots(RealType) { // // Approx limit of test data is 12 digits expressed here as a persentage: // RealType tolerance = (std::max)( boost::math::tools::epsilon(), (RealType)5e-12f) * 100; // // At float precision we need to up the tolerance, since // the input values are rounded off to inexact quantities // the results get thrown off by a noticeable amount. // if(boost::math::tools::digits() < 50) tolerance *= 50; if(boost::is_floating_point::value != 1) tolerance *= 20; // real_concept special functions are less accurate cout << "Tolerance = " << tolerance << "%." << endl; // // Test data is taken from: // // Computing discrete mixtures of continuous // distributions: noncentral chisquare, noncentral t // and the distribution of the square of the sample // multiple correlation coeficient. // Denise Benton, K. Krishnamoorthy. // Computational Statistics & Data Analysis 43 (2003) 249 - 267 // test_spot( static_cast(3), // degrees of freedom static_cast(1), // non centrality static_cast(2.34), // T static_cast(0.801888999613917), // Probability of result (CDF), P static_cast(1-0.801888999613917), // Q = 1 - P tolerance); test_spot( static_cast(126), // degrees of freedom static_cast(-2), // non centrality static_cast(-4.33), // T static_cast(1.252846196792878e-2), // Probability of result (CDF), P static_cast(1-1.252846196792878e-2), // Q = 1 - P tolerance); test_spot( static_cast(20), // degrees of freedom static_cast(23), // non centrality static_cast(23), // T static_cast(0.460134400391924), // Probability of result (CDF), P static_cast(1-0.460134400391924), // Q = 1 - P tolerance); test_spot( static_cast(20), // degrees of freedom static_cast(33), // non centrality static_cast(34), // T static_cast(0.532008386378725), // Probability of result (CDF), P static_cast(1-0.532008386378725), // Q = 1 - P tolerance); test_spot( static_cast(12), // degrees of freedom static_cast(38), // non centrality static_cast(39), // T static_cast(0.495868184917805), // Probability of result (CDF), P static_cast(1-0.495868184917805), // Q = 1 - P tolerance); test_spot( static_cast(12), // degrees of freedom static_cast(39), // non centrality static_cast(39), // T static_cast(0.446304024668836), // Probability of result (CDF), P static_cast(1-0.446304024668836), // Q = 1 - P tolerance); test_spot( static_cast(200), // degrees of freedom static_cast(38), // non centrality static_cast(39), // T static_cast(0.666194209961795), // Probability of result (CDF), P static_cast(1-0.666194209961795), // Q = 1 - P tolerance); test_spot( static_cast(200), // degrees of freedom static_cast(42), // non centrality static_cast(40), // T static_cast(0.179292265426085), // Probability of result (CDF), P static_cast(1-0.179292265426085), // Q = 1 - P tolerance); boost::math::non_central_t_distribution dist(static_cast(8), static_cast(12)); BOOST_CHECK_CLOSE(pdf(dist, 12), static_cast(1.235329715425894935157684607751972713457e-1L), tolerance); BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution(126, -2), -4), static_cast(5.797932289365814702402873546466798025787e-2L), tolerance); BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution(126, 2), 4), static_cast(5.797932289365814702402873546466798025787e-2L), tolerance); BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution(126, 2), 0), static_cast(5.388394890639957139696546086044839573749e-2L), tolerance); } // template void test_spots(RealType) template T nct_cdf(T df, T nc, T x) { return cdf(boost::math::non_central_t_distribution(df, nc), x); } template T nct_ccdf(T df, T nc, T x) { return cdf(complement(boost::math::non_central_t_distribution(df, nc), x)); } template void do_test_nc_t(T& data, const char* type_name, const char* test) { typedef typename T::value_type row_type; typedef typename row_type::value_type value_type; std::cout << "Testing: " << test << std::endl; value_type (*fp1)(value_type, value_type, value_type) = nct_cdf; boost::math::tools::test_result result; result = boost::math::tools::test( data, bind_func(fp1, 0, 1, 2), extract_result(3)); handle_test_result(result, data[result.worst()], result.worst(), type_name, "CDF", test); fp1 = nct_ccdf; result = boost::math::tools::test( data, bind_func(fp1, 0, 1, 2), extract_result(4)); handle_test_result(result, data[result.worst()], result.worst(), type_name, "CCDF", test); std::cout << std::endl; } template void quantile_sanity_check(T& data, const char* type_name, const char* test) { typedef typename T::value_type row_type; typedef typename row_type::value_type value_type; // // Tests with type real_concept take rather too long to run, so // for now we'll disable them: // if(!boost::is_floating_point::value) return; std::cout << "Testing: " << type_name << " quantile sanity check, with tests " << test << std::endl; // // These sanity checks test for a round trip accuracy of one half // of the bits in T, unless T is type float, in which case we check // for just one decimal digit. The problem here is the sensitivity // of the functions, not their accuracy. This test data was generated // for the forward functions, which means that when it is used as // the input to the inverses then it is necessarily inexact. This rounding // of the input is what makes the data unsuitable for use as an accuracy check, // and also demonstrates that you can't in general round-trip these functions. // It is however a useful sanity check. // value_type precision = static_cast(ldexp(1.0, 1-boost::math::policies::digits >()/2)) * 100; if(boost::math::policies::digits >() < 50) precision = 1; // 1% or two decimal digits, all we can hope for when the input is truncated to float for(unsigned i = 0; i < data.size(); ++i) { if(data[i][3] == 0) { BOOST_CHECK(0 == quantile(boost::math::non_central_t_distribution(data[i][0], data[i][1]), data[i][3])); } else if(data[i][3] < 0.9999f) { value_type p = quantile(boost::math::non_central_t_distribution(data[i][0], data[i][1]), data[i][3]); value_type pt = data[i][2]; BOOST_CHECK_CLOSE_EX(pt, p, precision, i); } if(data[i][4] == 0) { BOOST_CHECK(0 == quantile(complement(boost::math::non_central_t_distribution(data[i][0], data[i][1]), data[i][3]))); } else if(data[i][4] < 0.9999f) { value_type p = quantile(complement(boost::math::non_central_t_distribution(data[i][0], data[i][1]), data[i][4])); value_type pt = data[i][2]; BOOST_CHECK_CLOSE_EX(pt, p, precision, i); } if(boost::math::tools::digits() > 50) { // // Sanity check mode, the accuracy of // the mode is at *best* the square root of the accuracy of the PDF: // try{ value_type m = mode(boost::math::non_central_t_distribution(data[i][0], data[i][1])); value_type p = pdf(boost::math::non_central_t_distribution(data[i][0], data[i][1]), m); BOOST_CHECK_EX(pdf(boost::math::non_central_t_distribution(data[i][0], data[i][1]), m * (1 + sqrt(precision) * 100)) <= p, i); BOOST_CHECK_EX(pdf(boost::math::non_central_t_distribution(data[i][0], data[i][1]), m * (1 - sqrt(precision)) * 100) <= p, i); } catch(const boost::math::evaluation_error& ) {} #if 0 // // Sanity check degrees-of-freedom finder, don't bother at float // precision though as there's not enough data in the probability // values to get back to the correct degrees of freedom or // non-cenrality parameter: // try{ if((data[i][3] < 0.99) && (data[i][3] != 0)) { BOOST_CHECK_CLOSE_EX( boost::math::non_central_t_distribution::find_degrees_of_freedom(data[i][1], data[i][2], data[i][3]), data[i][0], precision, i); BOOST_CHECK_CLOSE_EX( boost::math::non_central_t_distribution::find_non_centrality(data[i][0], data[i][2], data[i][3]), data[i][1], precision, i); } if((data[i][4] < 0.99) && (data[i][4] != 0)) { BOOST_CHECK_CLOSE_EX( boost::math::non_central_t_distribution::find_degrees_of_freedom(boost::math::complement(data[i][1], data[i][2], data[i][4])), data[i][0], precision, i); BOOST_CHECK_CLOSE_EX( boost::math::non_central_t_distribution::find_non_centrality(boost::math::complement(data[i][0], data[i][2], data[i][4])), data[i][1], precision, i); } } catch(const std::exception& e) { BOOST_ERROR(e.what()); } #endif } } } template void test_accuracy(T, const char* type_name) { #include "nct.ipp" do_test_nc_t(nct, type_name, "Non Central T"); quantile_sanity_check(nct, type_name, "Non Central T"); } int test_main(int, char* []) { BOOST_MATH_CONTROL_FP; // Basic sanity-check spot values. expected_results(); // (Parameter value, arbitrarily zero, only communicates the floating point type). #ifdef TEST_FLOAT test_spots(0.0F); // Test float. #endif #ifdef TEST_DOUBLE test_spots(0.0); // Test double. #endif #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS #ifdef TEST_LDOUBLE test_spots(0.0L); // Test long double. #endif #if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582)) #ifdef TEST_REAL_CONCEPT test_spots(boost::math::concepts::real_concept(0.)); // Test real concept. #endif #endif #endif #ifdef TEST_FLOAT test_accuracy(0.0F, "float"); // Test float. #endif #ifdef TEST_DOUBLE test_accuracy(0.0, "double"); // Test double. #endif #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS #ifdef TEST_LDOUBLE test_accuracy(0.0L, "long double"); // Test long double. #endif #if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582)) #ifdef TEST_REAL_CONCEPT test_accuracy(boost::math::concepts::real_concept(0.), "real_concept"); // Test real concept. #endif #endif #endif return 0; } // int test_main(int, char* [])