// Copyright Paul A. Bristow 2013. // Copyright Nakhar Agrawal 2013. // Copyright John Maddock 2013. // Copyright Christopher Kormanyos 2013. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #pragma warning (disable : 4100) // unreferenced formal parameter. #pragma warning (disable : 4127) // conditional expression is constant. //#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error #include #include #include /* First 50 from 2 to 100 inclusive: */ /* TABLE[N[BernoulliB[n], 200], {n,2,100,2}] */ //SC_(0.1666666666666666666666666666666666666666), //SC_(-0.0333333333333333333333333333333333333333), //SC_(0.0238095238095238095238095238095238095238), //SC_(-0.0333333333333333333333333333333333333333), //SC_(0.0757575757575757575757575757575757575757), //SC_(-0.2531135531135531135531135531135531135531), //SC_(1.1666666666666666666666666666666666666666), //SC_(-7.0921568627450980392156862745098039215686), //SC_(54.9711779448621553884711779448621553884711), int main() { try { // It is always wise to use try'n'catch blocks around Boost.Math function // so that informative error messages will be displayed. //[bernoulli_example_1 /*`A simple example computes the value of `Bernoulli(2)` where the return type is `double`. [hint All odd Bernoulli numbers (> 1) are zero, so the parameter value 2 computes B[sub 4]. ] */ std::cout << std::setprecision(std::numeric_limits::digits10) << boost::math::bernoulli_b2n(2) << std::endl; /*` So B[sub 4] == -1/30 == -0.0333333333333333 If we use Boost.Multiprecision and its 50 decimal digit floating-point type `cpp_dec_float_50`, we can calculate the value of much larger numbers like `Bernoulli(100)` and also obtain much higher precision. */ std::cout << std::setprecision(std::numeric_limits::digits10) << boost::math::bernoulli_b2n(100) << std::endl; //] //[/bernoulli_example_1] //[bernoulli_example_2 /*`We can compute and save all the float-precision Bernoulli numbers from one call. */ std::vector bn(32); // Space for all the 32-bit `float` precision Bernoulli numbers. std::vector::iterator it = bn.begin(); // Start with Bernoulli number 0. boost::math::bernoulli_b2n(0, bn.size(), it); // Fill vector with even Bernoulli numbers. for(size_t i = 0; i < bn.size(); i++) { // Show vector of even Bernoulli numbers, showing all significant decimal digits. std::cout << std::setprecision(std::numeric_limits::digits10) << i*2 << ' ' << bn[i] << std::endl; } //] //[/bernoulli_example_2] //[bernoulli_example_3 /*`Of course, for any floating-point type, there is a maximum Bernoulli number than can be computed before it overflows the exponent. If we try to compute too high a Bernoulli number, an exception will be thrown, */ std::cout << std::setprecision(std::numeric_limits::digits10) << "Bernoulli number " << 33 * 2 <(33) << std::endl; /*` and (provided 'try'n'catch' blocks are used) we will get a helpful error message. */ //] //[/bernoulli_example_3] } catch (std::exception ex) { std::cout << "Thrown Exception caught: " << ex.what() << std::endl; } } // int main() /* //[bernoulli_output_1 -3.6470772645191354362138308865549944904868234686191e+215 //] //[/bernoulli_output_1] //[bernoulli_output_2 0 1 2 0.166667 4 -0.0333333 6 0.0238095 8 -0.0333333 10 0.0757576 12 -0.253114 14 1.16667 16 -7.09216 18 54.9712 20 -529.124 22 6192.12 24 -86580.3 26 1.42552e+006 28 -2.72982e+007 30 6.01581e+008 32 -1.51163e+010 34 4.29615e+011 36 -1.37117e+013 38 4.88332e+014 40 -1.92966e+016 42 8.41693e+017 44 -4.03381e+019 46 2.11507e+021 48 -1.20866e+023 50 7.50087e+024 52 -5.03878e+026 54 3.65288e+028 56 -2.84988e+030 58 2.38654e+032 60 -2.14e+034 62 2.0501e+036 //] //[/bernoulli_output_2] //[bernoulli_output_3 Bernoulli number 66 Thrown Exception caught: Error in function boost::math::bernoulli: Overflow error while calculating tangent number 2 //] //[/bernoulli_output_3] */