// (C) Copyright John Maddock 2006. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #include #include #include #include #include #include #include "functor.hpp" #include "handle_test_result.hpp" #include "test_legendre_hooks.hpp" // // DESCRIPTION: // ~~~~~~~~~~~~ // // This file tests the legendre polynomials. // There are two sets of tests, spot // tests which compare our results with selected values computed // using the online special function calculator at // functions.wolfram.com, while the bulk of the accuracy tests // use values generated with NTL::RR at 1000-bit precision // and our generic versions of these functions. // // Note that when this file is first run on a new platform many of // these tests will fail: the default accuracy is 1 epsilon which // is too tight for most platforms. In this situation you will // need to cast a human eye over the error rates reported and make // a judgement as to whether they are acceptable. Either way please // report the results to the Boost mailing list. Acceptable rates of // error are marked up below as a series of regular expressions that // identify the compiler/stdlib/platform/data-type/test-data/test-function // along with the maximum expected peek and RMS mean errors for that // test. // void expected_results() { // // Define the max and mean errors expected for // various compilers and platforms. // const char* largest_type; #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS if(boost::math::policies::digits >() == boost::math::policies::digits >()) { largest_type = "(long\\s+)?double"; } else { largest_type = "long double"; } #else largest_type = "(long\\s+)?double"; #endif // // Linux: // if((std::numeric_limits::digits <= 64) && (std::numeric_limits::digits != std::numeric_limits::digits)) { #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform "double", // test type(s) ".*", // test data group ".*", 10, 5); // test function #endif } if(std::numeric_limits::digits == 64) { add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform largest_type, // test type(s) "Legendre Polynomials.*Large.*", // test data group "boost::math::legendre_p", 1000, 200); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform largest_type, // test type(s) "Legendre Polynomials.*Large.*", // test data group "boost::math::legendre_q", 7000, 1000); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform "real_concept", // test type(s) "Legendre Polynomials.*Large.*", // test data group "boost::math::legendre_p", 1000, 200); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform "real_concept", // test type(s) "Legendre Polynomials.*Large.*", // test data group "boost::math::legendre_q", 7000, 1000); // test function } // // Catch all cases come last: // add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform largest_type, // test type(s) "Legendre Polynomials.*Large.*", // test data group "boost::math::legendre_p", 400, 200); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform largest_type, // test type(s) "Legendre Polynomials.*Large.*", // test data group "boost::math::legendre_q", 5400, 500); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform largest_type, // test type(s) "Legendre Polynomials.*", // test data group "boost::math::legendre_p", 300, 80); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform largest_type, // test type(s) "Legendre Polynomials.*", // test data group "boost::math::legendre_q", 100, 50); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform largest_type, // test type(s) "Associated Legendre Polynomials.*", // test data group ".*", 200, 20); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform "real_concept", // test type(s) "Legendre Polynomials.*Large.*", // test data group "boost::math::legendre_p", 400, 200); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform "real_concept", // test type(s) "Legendre Polynomials.*Large.*", // test data group "boost::math::legendre_q", 5400, 500); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform "real_concept", // test type(s) "Legendre Polynomials.*", // test data group "boost::math::legendre_p", 300, 80); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform "real_concept", // test type(s) "Legendre Polynomials.*", // test data group "boost::math::legendre_q", 100, 50); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform "real_concept", // test type(s) "Associated Legendre Polynomials.*", // test data group ".*", 200, 20); // test function // // Finish off by printing out the compiler/stdlib/platform names, // we do this to make it easier to mark up expected error rates. // std::cout << "Tests run with " << BOOST_COMPILER << ", " << BOOST_STDLIB << ", " << BOOST_PLATFORM << std::endl; } template void do_test_legendre_p(const T& data, const char* type_name, const char* test_name) { typedef typename T::value_type row_type; typedef typename row_type::value_type value_type; typedef value_type (*pg)(int, value_type); pg funcp = boost::math::legendre_p; boost::math::tools::test_result result; std::cout << "Testing " << test_name << " with type " << type_name << "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n"; // // test legendre_p against data: // result = boost::math::tools::test( data, bind_func_int1(funcp, 0, 1), extract_result(2)); handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::legendre_p", test_name); #ifdef TEST_OTHER if(::boost::is_floating_point::value){ funcp = other::legendre_p; result = boost::math::tools::test( data, bind_func_int1(funcp, 0, 1), extract_result(2)); print_test_result(result, data[result.worst()], result.worst(), type_name, "other::legendre_p"); } #endif typedef value_type (*pg2)(unsigned, value_type); pg2 funcp2 = boost::math::legendre_q; // // test legendre_q against data: // result = boost::math::tools::test( data, bind_func_int1(funcp2, 0, 1), extract_result(3)); handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::legendre_q", test_name); #ifdef TEST_OTHER if(::boost::is_floating_point::value){ funcp = other::legendre_q; result = boost::math::tools::test( data, bind_func_int1(funcp2, 0, 1), extract_result(3)); print_test_result(result, data[result.worst()], result.worst(), type_name, "other::legendre_q"); } #endif std::cout << std::endl; } template void do_test_assoc_legendre_p(const T& data, const char* type_name, const char* test_name) { typedef typename T::value_type row_type; typedef typename row_type::value_type value_type; typedef value_type (*pg)(int, int, value_type); pg funcp = boost::math::legendre_p; boost::math::tools::test_result result; std::cout << "Testing " << test_name << " with type " << type_name << "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n"; // // test legendre_p against data: // result = boost::math::tools::test( data, bind_func_int2(funcp, 0, 1, 2), extract_result(3)); handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::legendre_p", test_name); std::cout << std::endl; } template void test_legendre_p(T, const char* name) { // // The actual test data is rather verbose, so it's in a separate file // // The contents are as follows, each row of data contains // three items, input value a, input value b and erf(a, b): // # include "legendre_p.ipp" do_test_legendre_p(legendre_p, name, "Legendre Polynomials: Small Values"); # include "legendre_p_large.ipp" do_test_legendre_p(legendre_p_large, name, "Legendre Polynomials: Large Values"); # include "assoc_legendre_p.ipp" do_test_assoc_legendre_p(assoc_legendre_p, name, "Associated Legendre Polynomials: Small Values"); } template void test_spots(T, const char* t) { std::cout << "Testing basic sanity checks for type " << t << std::endl; // // basic sanity checks, tolerance is 100 epsilon: // T tolerance = boost::math::tools::epsilon() * 100; BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(1, static_cast(0.5L)), static_cast(0.5L), tolerance); BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-1, static_cast(0.5L)), static_cast(1L), tolerance); BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(4, static_cast(0.5L)), static_cast(-0.2890625000000000000000000000000000000000L), tolerance); BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-4, static_cast(0.5L)), static_cast(-0.4375000000000000000000000000000000000000L), tolerance); BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(7, static_cast(0.5L)), static_cast(0.2231445312500000000000000000000000000000L), tolerance); BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-7, static_cast(0.5L)), static_cast(0.3232421875000000000000000000000000000000L), tolerance); BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(40, static_cast(0.5L)), static_cast(-0.09542943523261546936538467572384923220258L), tolerance); BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-40, static_cast(0.5L)), static_cast(-0.1316993126940266257030910566308990611306L), tolerance); BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(4, 2, static_cast(0.5L)), static_cast(4.218750000000000000000000000000000000000L), tolerance); BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-4, 2, static_cast(0.5L)), static_cast(5.625000000000000000000000000000000000000L), tolerance); BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(7, 5, static_cast(0.5L)), static_cast(-5696.789530152175143607977274672800795328L), tolerance); BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-7, 4, static_cast(0.5L)), static_cast(465.1171875000000000000000000000000000000L), tolerance); if(std::numeric_limits::max_exponent > std::numeric_limits::max_exponent) { BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(40, 30, static_cast(0.5L)), static_cast(-7.855722083232252643913331343916012143461e45L), tolerance); } BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-40, 20, static_cast(0.5L)), static_cast(4.966634149702370788037088925152355134665e30L), tolerance); BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(4, 2, static_cast(-0.5L)), static_cast(4.218750000000000000000000000000000000000L), tolerance); BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-4, 2, static_cast(-0.5L)), static_cast(-5.625000000000000000000000000000000000000L), tolerance); BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(7, 5, static_cast(-0.5L)), static_cast(-5696.789530152175143607977274672800795328L), tolerance); BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-7, 4, static_cast(-0.5L)), static_cast(465.1171875000000000000000000000000000000L), tolerance); if(std::numeric_limits::max_exponent > std::numeric_limits::max_exponent) { BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(40, 30, static_cast(-0.5L)), static_cast(-7.855722083232252643913331343916012143461e45L), tolerance); } BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-40, 20, static_cast(-0.5L)), static_cast(-4.966634149702370788037088925152355134665e30L), tolerance); BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(4, -2, static_cast(0.5L)), static_cast(0.01171875000000000000000000000000000000000L), tolerance); BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-4, -2, static_cast(0.5L)), static_cast(0.04687500000000000000000000000000000000000L), tolerance); BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(7, -5, static_cast(0.5L)), static_cast(0.00002378609812640364935569308025139290054701L), tolerance); BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-7, -4, static_cast(0.5L)), static_cast(0.0002563476562500000000000000000000000000000L), tolerance); BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(40, -30, static_cast(0.5L)), static_cast(-2.379819988646847616996471299410611801239e-48L), tolerance); BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_p(-40, -20, static_cast(0.5L)), static_cast(4.356454600748202401657099008867502679122e-33L), tolerance); BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_q(1, static_cast(0.5L)), static_cast(-0.7253469278329725771511886907693685738381L), tolerance); BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_q(4, static_cast(0.5L)), static_cast(0.4401745259867706044988642951843745400835L), tolerance); BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_q(7, static_cast(0.5L)), static_cast(-0.3439152932669753451878700644212067616780L), tolerance); BOOST_CHECK_CLOSE_FRACTION(::boost::math::legendre_q(40, static_cast(0.5L)), static_cast(0.1493671665503550095010454949479907886011L), tolerance); } int test_main(int, char* []) { BOOST_MATH_CONTROL_FP; test_spots(0.0F, "float"); test_spots(0.0, "double"); #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS test_spots(0.0L, "long double"); test_spots(boost::math::concepts::real_concept(0.1), "real_concept"); #endif expected_results(); test_legendre_p(0.1F, "float"); test_legendre_p(0.1, "double"); #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS test_legendre_p(0.1L, "long double"); #ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS test_legendre_p(boost::math::concepts::real_concept(0.1), "real_concept"); #endif #else std::cout << "The long double tests have been disabled on this platform " "either because the long double overloads of the usual math functions are " "not available at all, or because they are too inaccurate for these tests " "to pass." << std::cout; #endif return 0; }