// Copyright Xiaogang Zhang 2006 // Copyright John Maddock 2006, 2007 // Copyright Paul A. Bristow 2007 // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifdef _MSC_VER # pragma warning(disable : 4756) // overflow in constant arithmetic // Constants are too big for float case, but this doesn't matter for test. #endif #include #include #include #include #include #include "functor.hpp" #include "handle_test_result.hpp" // // DESCRIPTION: // ~~~~~~~~~~~~ // // This file tests the Elliptic Integrals of the second kind. // There are two sets of tests, spot // tests which compare our results with selected values computed // using the online special function calculator at // functions.wolfram.com, while the bulk of the accuracy tests // use values generated with NTL::RR at 1000-bit precision // and our generic versions of these functions. // // Note that when this file is first run on a new platform many of // these tests will fail: the default accuracy is 1 epsilon which // is too tight for most platforms. In this situation you will // need to cast a human eye over the error rates reported and make // a judgement as to whether they are acceptable. Either way please // report the results to the Boost mailing list. Acceptable rates of // error are marked up below as a series of regular expressions that // identify the compiler/stdlib/platform/data-type/test-data/test-function // along with the maximum expected peek and RMS mean errors for that // test. // void expected_results() { // // Define the max and mean errors expected for // various compilers and platforms. // const char* largest_type; #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS if(boost::math::policies::digits >() == boost::math::policies::digits >()) { largest_type = "(long\\s+)?double"; } else { largest_type = "long double"; } #else largest_type = "(long\\s+)?double"; #endif // // Catch all cases come last: // add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform largest_type, // test type(s) ".*", // test data group ".*", 15, 6); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform "real_concept", // test type(s) ".*", // test data group ".*", 15, 6); // test function // // Finish off by printing out the compiler/stdlib/platform names, // we do this to make it easier to mark up expected error rates. // std::cout << "Tests run with " << BOOST_COMPILER << ", " << BOOST_STDLIB << ", " << BOOST_PLATFORM << std::endl; } template void do_test_ellint_e2(const T& data, const char* type_name, const char* test) { typedef typename T::value_type row_type; typedef typename row_type::value_type value_type; std::cout << "Testing: " << test << std::endl; value_type (*fp2)(value_type, value_type) = boost::math::ellint_2; boost::math::tools::test_result result; result = boost::math::tools::test( data, bind_func(fp2, 1, 0), extract_result(2)); handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::ellint_2", test); std::cout << std::endl; } template void do_test_ellint_e1(T& data, const char* type_name, const char* test) { typedef typename T::value_type row_type; typedef typename row_type::value_type value_type; boost::math::tools::test_result result; std::cout << "Testing: " << test << std::endl; value_type (*fp1)(value_type) = boost::math::ellint_2; result = boost::math::tools::test( data, bind_func(fp1, 0), extract_result(1)); handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::ellint_2", test); std::cout << std::endl; } template void test_spots(T, const char* type_name) { // Function values calculated on http://functions.wolfram.com/ // Note that Mathematica's EllipticE accepts k^2 as the second parameter. #define SC_(x) static_cast(BOOST_JOIN(x, L)) static const boost::array, 10> data1 = { SC_(0), SC_(0), SC_(0), SC_(-10), SC_(0), SC_(-10), SC_(-1), SC_(-1), SC_(-0.84147098480789650665250232163029899962256306079837), SC_(-4), SC_(900) / 1024, SC_(-3.1756145986492562317862928524528520686391383168377), SC_(8), SC_(-600) / 1024, SC_(7.2473147180505693037677015377802777959345489333465), SC_(1e-05), SC_(800) / 1024, SC_(9.999999999898274739584436515967055859383969942432E-6), SC_(1e+05), SC_(100) / 1024, SC_(99761.153306972066658135668386691227343323331995888), SC_(1e+10), SC_(-0.5), SC_(9.3421545766487137036576748555295222252286528414669e9), ldexp(SC_(1), 66), SC_(400) / 1024, SC_(7.0886102721911705466476846969992069994308167515242e19), ldexp(SC_(1), 166), SC_(900) / 1024, SC_(7.1259011068364515942912094521783688927118026465790e49), }; #undef SC_ do_test_ellint_e2(data1, type_name, "Elliptic Integral E: Mathworld Data"); #include "ellint_e2_data.ipp" do_test_ellint_e2(ellint_e2_data, type_name, "Elliptic Integral E: Random Data"); // Function values calculated on http://functions.wolfram.com/ // Note that Mathematica's EllipticE accepts k^2 as the second parameter. #define SC_(x) static_cast(BOOST_JOIN(x, L)) static const boost::array, 10> data2 = { SC_(-1), SC_(1), SC_(0), SC_(1.5707963267948966192313216916397514420985846996876), SC_(100) / 1024, SC_(1.5670445330545086723323795143598956428788609133377), SC_(200) / 1024, SC_(1.5557071588766556854463404816624361127847775545087), SC_(300) / 1024, SC_(1.5365278991162754883035625322482669608948678755743), SC_(400) / 1024, SC_(1.5090417763083482272165682786143770446401437564021), SC_(-0.5), SC_(1.4674622093394271554597952669909161360253617523272), SC_(-600) / 1024, SC_(1.4257538571071297192428217218834579920545946473778), SC_(-800) / 1024, SC_(1.2927868476159125056958680222998765985004489572909), SC_(-900) / 1024, SC_(1.1966864890248739524112920627353824133420353430982), }; #undef SC_ do_test_ellint_e1(data2, type_name, "Elliptic Integral E: Mathworld Data"); #include "ellint_e_data.ipp" do_test_ellint_e1(ellint_e_data, type_name, "Elliptic Integral E: Random Data"); } int test_main(int, char* []) { expected_results(); BOOST_MATH_CONTROL_FP; #ifndef BOOST_MATH_BUGGY_LARGE_FLOAT_CONSTANTS test_spots(0.0F, "float"); #endif test_spots(0.0, "double"); #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS test_spots(0.0L, "long double"); #ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS test_spots(boost::math::concepts::real_concept(0), "real_concept"); #endif #else std::cout << "The long double tests have been disabled on this platform " "either because the long double overloads of the usual math functions are " "not available at all, or because they are too inaccurate for these tests " "to pass." << std::cout; #endif return 0; }