// (C) Copyright John Maddock 2007. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #include #include #include #include #include #include #include "functor.hpp" #include "handle_test_result.hpp" #include "test_bessel_hooks.hpp" // // DESCRIPTION: // ~~~~~~~~~~~~ // // This file tests the bessel functions. There are two sets of tests, spot // tests which compare our results with selected values computed // using the online special function calculator at // functions.wolfram.com, while the bulk of the accuracy tests // use values generated with NTL::RR at 1000-bit precision // and our generic versions of these functions. // // Note that when this file is first run on a new platform many of // these tests will fail: the default accuracy is 1 epsilon which // is too tight for most platforms. In this situation you will // need to cast a human eye over the error rates reported and make // a judgement as to whether they are acceptable. Either way please // report the results to the Boost mailing list. Acceptable rates of // error are marked up below as a series of regular expressions that // identify the compiler/stdlib/platform/data-type/test-data/test-function // along with the maximum expected peek and RMS mean errors for that // test. // void expected_results() { // // Define the max and mean errors expected for // various compilers and platforms. // const char* largest_type; #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS if(boost::math::policies::digits >() == boost::math::policies::digits >()) { largest_type = "(long\\s+)?double|real_concept"; } else { largest_type = "long double|real_concept"; } #else largest_type = "(long\\s+)?double"; #endif // // HP-UX specific rates: // // Error rate for double precision are limited by the accuracy of // the approximations use, which bracket rather than preserve the root. // add_expected_result( ".*", // compiler ".*", // stdlib "HP-UX", // platform largest_type, // test type(s) ".*J0.*Tricky.*", // test data group ".*", 80000000000LL, 80000000000LL); // test function add_expected_result( ".*", // compiler ".*", // stdlib "HP-UX", // platform largest_type, // test type(s) ".*J1.*Tricky.*", // test data group ".*", 3000000, 2000000); // test function add_expected_result( ".*", // compiler ".*", // stdlib "HP-UX", // platform "double", // test type(s) ".*Tricky.*", // test data group ".*", 100000, 100000); // test function add_expected_result( ".*", // compiler ".*", // stdlib "HP-UX", // platform largest_type, // test type(s) ".*J.*Tricky.*", // test data group ".*", 3000, 500); // test function // // HP Tru64: // add_expected_result( ".*Tru64.*", // compiler ".*", // stdlib ".*", // platform "double", // test type(s) ".*Tricky.*", // test data group ".*", 100000, 100000); // test function add_expected_result( ".*Tru64.*", // compiler ".*", // stdlib ".*", // platform largest_type, // test type(s) ".*Tricky large.*", // test data group ".*", 3000, 1000); // test function // // Solaris specific rates: // // Error rate for double precision are limited by the accuracy of // the approximations use, which bracket rather than preserve the root. // add_expected_result( ".*", // compiler ".*", // stdlib "Sun Solaris", // platform largest_type, // test type(s) "Bessel J: Random Data.*Tricky.*", // test data group ".*", 3000, 500); // test function add_expected_result( ".*", // compiler ".*", // stdlib "Sun Solaris", // platform "double", // test type(s) ".*Tricky.*", // test data group ".*", 200000, 100000); // test function add_expected_result( ".*", // compiler ".*", // stdlib "Sun Solaris", // platform largest_type, // test type(s) ".*J.*tricky.*", // test data group ".*", 400000000, 200000000); // test function // // Mac OS X: // add_expected_result( ".*", // compiler ".*", // stdlib "Mac OS", // platform largest_type, // test type(s) ".*J0.*Tricky.*", // test data group ".*", 400000000, 400000000); // test function add_expected_result( ".*", // compiler ".*", // stdlib "Mac OS", // platform largest_type, // test type(s) ".*J1.*Tricky.*", // test data group ".*", 3000000, 2000000); // test function add_expected_result( ".*", // compiler ".*", // stdlib "Mac OS", // platform largest_type, // test type(s) "Bessel JN.*", // test data group ".*", 40000, 20000); // test function add_expected_result( ".*", // compiler ".*", // stdlib "Mac OS", // platform largest_type, // test type(s) "Bessel J:.*", // test data group ".*", 50000, 20000); // test function // // Linux specific results: // // sin and cos appear to have only double precision for large // arguments on some linux distros: // add_expected_result( ".*", // compiler ".*", // stdlib "linux", // platform largest_type, // test type(s) ".*J:.*", // test data group ".*", 40000, 30000); // test function #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS if((std::numeric_limits::digits != std::numeric_limits::digits) && (std::numeric_limits::digits < 90)) { // some errors spill over into type double as well: add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform "double", // test type(s) ".*J0.*Tricky.*", // test data group ".*", 400000, 400000); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform "double", // test type(s) ".*J1.*Tricky.*", // test data group ".*", 5000, 5000); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform "double", // test type(s) ".*(JN|j).*|.*Tricky.*", // test data group ".*", 50, 50); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform "double", // test type(s) ".*", // test data group ".*", 30, 30); // test function // // and we have a few cases with higher limits as well: // add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform largest_type, // test type(s) ".*J0.*Tricky.*", // test data group ".*", 400000000, 400000000); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform largest_type, // test type(s) ".*J1.*Tricky.*", // test data group ".*", 5000000, 5000000); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform largest_type, // test type(s) ".*(JN|j).*|.*Tricky.*", // test data group ".*", 33000, 20000); // test function } #endif add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform largest_type, // test type(s) ".*J0.*Tricky.*", // test data group ".*", 400000000, 400000000); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform largest_type, // test type(s) ".*J1.*Tricky.*", // test data group ".*", 5000000, 5000000); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform largest_type, // test type(s) ".*JN.*Integer.*", // test data group ".*", 30000, 10000); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform largest_type, // test type(s) ".*(JN|j).*|.*Tricky.*", // test data group ".*", 1500, 700); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform largest_type, // test type(s) ".*", // test data group ".*", 40, 20); // test function // // Finish off by printing out the compiler/stdlib/platform names, // we do this to make it easier to mark up expected error rates. // std::cout << "Tests run with " << BOOST_COMPILER << ", " << BOOST_STDLIB << ", " << BOOST_PLATFORM << std::endl; } template void do_test_cyl_bessel_j(const T& data, const char* type_name, const char* test_name) { typedef typename T::value_type row_type; typedef typename row_type::value_type value_type; typedef value_type (*pg)(value_type, value_type); pg funcp = boost::math::cyl_bessel_j; boost::math::tools::test_result result; std::cout << "Testing " << test_name << " with type " << type_name << "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n"; // // test cyl_bessel_j against data: // result = boost::math::tools::test( data, bind_func(funcp, 0, 1), extract_result(2)); handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::cyl_bessel_j", test_name); std::cout << std::endl; #ifdef TEST_OTHER if(boost::is_floating_point::value) { funcp = other::cyl_bessel_j; // // test other::cyl_bessel_j against data: // result = boost::math::tools::test( data, bind_func(funcp, 0, 1), extract_result(2)); handle_test_result(result, data[result.worst()], result.worst(), type_name, "other::cyl_bessel_j", test_name); std::cout << std::endl; } #endif } template T cyl_bessel_j_int_wrapper(T v, T x) { return static_cast(boost::math::cyl_bessel_j(boost::math::itrunc(v), x)); } template void do_test_cyl_bessel_j_int(const T& data, const char* type_name, const char* test_name) { typedef typename T::value_type row_type; typedef typename row_type::value_type value_type; typedef value_type (*pg)(value_type, value_type); pg funcp = cyl_bessel_j_int_wrapper; boost::math::tools::test_result result; std::cout << "Testing " << test_name << " with type " << type_name << "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n"; // // test cyl_bessel_j against data: // result = boost::math::tools::test( data, bind_func(funcp, 0, 1), extract_result(2)); handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::cyl_bessel_j", test_name); std::cout << std::endl; } template void do_test_sph_bessel_j(const T& data, const char* type_name, const char* test_name) { typedef typename T::value_type row_type; typedef typename row_type::value_type value_type; typedef value_type (*pg)(unsigned, value_type); pg funcp = boost::math::sph_bessel; typedef int (*cast_t)(value_type); boost::math::tools::test_result result; std::cout << "Testing " << test_name << " with type " << type_name << "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n"; // // test sph_bessel against data: // result = boost::math::tools::test( data, bind_func_int1(funcp, 0, 1), extract_result(2)); handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::sph_bessel", test_name); std::cout << std::endl; } template void test_bessel(T, const char* name) { // // The actual test data is rather verbose, so it's in a separate file // // The contents are as follows, each row of data contains // three items, input value a, input value b and erf(a, b): // // function values calculated on http://functions.wolfram.com/ #define SC_(x) static_cast(BOOST_JOIN(x, L)) static const boost::array, 8> j0_data = {{ { SC_(0), SC_(0), SC_(1) }, { SC_(0), SC_(1), SC_(0.7651976865579665514497175261026632209093) }, { SC_(0), SC_(-2), SC_(0.2238907791412356680518274546499486258252) }, { SC_(0), SC_(4), SC_(-0.3971498098638473722865907684516980419756) }, { SC_(0), SC_(-8), SC_(0.1716508071375539060908694078519720010684) }, { SC_(0), SC_(1e-05), SC_(0.999999999975000000000156249999999565972) }, { SC_(0), SC_(1e-10), SC_(0.999999999999999999997500000000000000000) }, { SC_(0), SC_(-1e+01), SC_(-0.2459357644513483351977608624853287538296) }, }}; static const boost::array, 6> j0_tricky = {{ // Big numbers make the accuracy of std::sin the limiting factor: { SC_(0), SC_(1e+03), SC_(0.02478668615242017456133073111569370878617) }, { SC_(0), SC_(1e+05), SC_(-0.001719201116235972192570601477073201747532) }, // test at the roots: { SC_(0), SC_(2521642)/(1024 * 1024), SC_(1.80208819970046790002973759410972422387259992955354630042138e-7) }, { SC_(0), SC_(5788221)/(1024 * 1024), SC_(-1.37774249380686777043369399806210229535671843632174587432454e-7) }, { SC_(0), SC_(9074091)/(1024 * 1024), SC_(1.03553057441100845081018471279571355857520645127532785991335e-7) }, { SC_(0), SC_(12364320)/(1024 * 1024), SC_(-3.53017140778223781420794006033810387155048392363051866610931e-9) } }}; static const boost::array, 8> j1_data = { SC_(1), SC_(0), SC_(0), SC_(1), SC_(1), SC_(0.4400505857449335159596822037189149131274), SC_(1), SC_(-2), SC_(-0.5767248077568733872024482422691370869203), SC_(1), SC_(4), SC_(-6.604332802354913614318542080327502872742e-02), SC_(1), SC_(-8), SC_(-0.2346363468539146243812766515904546115488), SC_(1), SC_(1e-05), SC_(4.999999999937500000000260416666666124132e-06), SC_(1), SC_(1e-10), SC_(4.999999999999999999993750000000000000000e-11), SC_(1), SC_(-1e+01), SC_(-4.347274616886143666974876802585928830627e-02), }; static const boost::array, 5> j1_tricky = { // Big numbers make the accuracy of std::sin the limiting factor: SC_(1), SC_(1e+03), SC_(4.728311907089523917576071901216916285418e-03), SC_(1), SC_(1e+05), SC_(1.846757562882567716362123967114215743694e-03), // test zeros: SC_(1), SC_(4017834)/(1024*1024), SC_(3.53149033321258645807835062770856949751958513973522222203044e-7), SC_(1), SC_(7356375)/(1024*1024), SC_(-2.31227973111067286051984021150135526024117175836722748404342e-7), SC_(1), SC_(10667654)/(1024*1024), SC_(1.24591331097191900488116495350277530373473085499043086981229e-7), }; static const boost::array, 14> jn_data = { SC_(2), SC_(0), SC_(0), SC_(2), SC_(1e-02), SC_(1.249989583365885362413250958437642113452e-05), SC_(5), SC_(10), SC_(-0.2340615281867936404436949416457777864635), SC_(5), SC_(-10), SC_(0.2340615281867936404436949416457777864635), SC_(-5), SC_(1e+06), SC_(7.259643842453285052375779970433848914846e-04), SC_(5), SC_(1e+06), SC_(-0.000725964384245328505237577997043384891484649290328285235308619), SC_(-5), SC_(-1), SC_(2.497577302112344313750655409880451981584e-04), SC_(10), SC_(10), SC_(0.2074861066333588576972787235187534280327), SC_(10), SC_(-10), SC_(0.2074861066333588576972787235187534280327), SC_(10), SC_(-5), SC_(1.467802647310474131107532232606627020895e-03), SC_(-10), SC_(1e+06), SC_(-3.310793117604488741264958559035744460210e-04), SC_(10), SC_(1e+06), SC_(-0.000331079311760448874126495855903574446020957243277028930713243), SC_(1e+02), SC_(8e+01), SC_(4.606553064823477354141298259169874909670e-06), SC_(1e+03), SC_(1e+05), SC_(1.283178112502480365195139312635384057363e-03), }; do_test_cyl_bessel_j(j0_data, name, "Bessel J0: Mathworld Data"); do_test_cyl_bessel_j(j0_tricky, name, "Bessel J0: Mathworld Data (Tricky cases)"); do_test_cyl_bessel_j(j1_data, name, "Bessel J1: Mathworld Data"); do_test_cyl_bessel_j(j1_tricky, name, "Bessel J1: Mathworld Data (tricky cases)"); do_test_cyl_bessel_j(jn_data, name, "Bessel JN: Mathworld Data"); do_test_cyl_bessel_j_int(j0_data, name, "Bessel J0: Mathworld Data (Integer Version)"); do_test_cyl_bessel_j_int(j0_tricky, name, "Bessel J0: Mathworld Data (Tricky cases) (Integer Version)"); do_test_cyl_bessel_j_int(j1_data, name, "Bessel J1: Mathworld Data (Integer Version)"); do_test_cyl_bessel_j_int(j1_tricky, name, "Bessel J1: Mathworld Data (tricky cases) (Integer Version)"); do_test_cyl_bessel_j_int(jn_data, name, "Bessel JN: Mathworld Data (Integer Version)"); static const boost::array, 17> jv_data = { //SC_(-2.4), SC_(0), std::numeric_limits::infinity(), SC_(2457)/1024, SC_(1)/1024, SC_(3.80739920118603335646474073457326714709615200130620574875292e-9), SC_(5.5), SC_(3217)/1024, SC_(0.0281933076257506091621579544064767140470089107926550720453038), SC_(-5.5), SC_(3217)/1024, SC_(-2.55820064470647911823175836997490971806135336759164272675969), SC_(-5.5), SC_(1e+04), SC_(2.449843111985605522111159013846599118397e-03), SC_(5.5), SC_(1e+04), SC_(0.00759343502722670361395585198154817047185480147294665270646578), SC_(5.5), SC_(1e+06), SC_(-0.000747424248595630177396350688505919533097973148718960064663632), SC_(5.125), SC_(1e+06), SC_(-0.000776600124835704280633640911329691642748783663198207360238214), SC_(5.875), SC_(1e+06), SC_(-0.000466322721115193071631008581529503095819705088484386434589780), SC_(0.5), SC_(101), SC_(0.0358874487875643822020496677692429287863419555699447066226409), SC_(-5.5), SC_(1e+04), SC_(0.00244984311198560552211115901384659911839737686676766460822577), SC_(-5.5), SC_(1e+06), SC_(0.000279243200433579511095229508894156656558211060453622750659554), SC_(-0.5), SC_(101), SC_(0.0708184798097594268482290389188138201440114881159344944791454), SC_(-10486074) / (1024*1024), SC_(1)/1024, SC_(1.41474013160494695750009004222225969090304185981836460288562e35), SC_(-10486074) / (1024*1024), SC_(15), SC_(-0.0902239288885423309568944543848111461724911781719692852541489), SC_(10486074) / (1024*1024), SC_(1e+02), SC_(-0.0547064914615137807616774867984047583596945624129838091326863), SC_(10486074) / (1024*1024), SC_(2e+04), SC_(-0.00556783614400875611650958980796060611309029233226596737701688), SC_(-10486074) / (1024*1024), SC_(1e+02), SC_(-0.0547613660316806551338637153942604550779513947674222863858713), }; do_test_cyl_bessel_j(jv_data, name, "Bessel J: Mathworld Data"); #undef SC_ #include "bessel_j_int_data.ipp" do_test_cyl_bessel_j(bessel_j_int_data, name, "Bessel JN: Random Data"); #include "bessel_j_data.ipp" do_test_cyl_bessel_j(bessel_j_data, name, "Bessel J: Random Data"); #include "bessel_j_large_data.ipp" do_test_cyl_bessel_j(bessel_j_large_data, name, "Bessel J: Random Data (Tricky large values)"); #include "sph_bessel_data.ipp" do_test_sph_bessel_j(sph_bessel_data, name, "Bessel j: Random Data"); } int test_main(int, char* []) { #ifdef TEST_GSL gsl_set_error_handler_off(); #endif expected_results(); BOOST_MATH_CONTROL_FP; test_bessel(0.1F, "float"); test_bessel(0.1, "double"); #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS test_bessel(0.1L, "long double"); #ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS test_bessel(boost::math::concepts::real_concept(0.1), "real_concept"); #endif #else std::cout << "The long double tests have been disabled on this platform " "either because the long double overloads of the usual math functions are " "not available at all, or because they are too inaccurate for these tests " "to pass." << std::cout; #endif return 0; }