// (C) Copyright Matt Borland 2021. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #include #include #include #include #include #include #include #include #ifdef BOOST_HAS_FLOAT128 #include template void test_mp_sqrt() { constexpr Real tol = 2*std::numeric_limits::epsilon(); // Sqrt(2) constexpr Real test_val = boost::math::ccmath::sqrt(Real(2)); constexpr Real sqrt2 = Real(1.4142135623730950488016887242096980785696718753769480731766797379Q); constexpr Real abs_test_error = (test_val - sqrt2) > 0 ? (test_val - sqrt2) : (sqrt2 - test_val); static_assert(abs_test_error < tol, "Out of tolerance"); // inf constexpr Real test_inf = boost::math::ccmath::sqrt(std::numeric_limits::infinity()); static_assert(test_inf == std::numeric_limits::infinity(), "Not infinity"); // NAN constexpr Real test_nan = boost::math::ccmath::sqrt(std::numeric_limits::quiet_NaN()); static_assert(test_nan, "Not a NAN"); // 100'000'000 constexpr Real test_100m = boost::math::ccmath::sqrt(100000000); static_assert(test_100m == 10000, "Incorrect"); } #endif template void test_float_sqrt() { using std::abs; constexpr Real tol = 2*std::numeric_limits::epsilon(); constexpr Real test_val = boost::math::ccmath::sqrt(Real(2)); constexpr Real sqrt2 = Real(1.4142135623730950488016887242096980785696718753769480731766797379L); constexpr Real abs_test_error = (test_val - sqrt2) > 0 ? (test_val - sqrt2) : (sqrt2 - test_val); static_assert(abs_test_error < tol, "Out of tolerance"); Real known_val = std::sqrt(Real(2)); BOOST_TEST(abs(test_val - known_val) < tol); // 1000 eps constexpr Real test_1000 = boost::math::ccmath::sqrt(1000*std::numeric_limits::epsilon()); Real known_1000 = std::sqrt(1000*std::numeric_limits::epsilon()); BOOST_TEST(abs(test_1000 - known_1000) < tol); // inf constexpr Real test_inf = boost::math::ccmath::sqrt(std::numeric_limits::infinity()); static_assert(test_inf == std::numeric_limits::infinity(), "Not infinity"); // neg inf constexpr Real neg_inf = boost::math::ccmath::sqrt(-std::numeric_limits::infinity()); static_assert(boost::math::ccmath::isnan(neg_inf)); Real stl_neg_inf = std::sqrt(-std::numeric_limits::infinity()); BOOST_MATH_ASSERT(boost::math::fpclassify(neg_inf) == boost::math::fpclassify(stl_neg_inf)); // NAN constexpr Real test_nan = boost::math::ccmath::sqrt(std::numeric_limits::quiet_NaN()); static_assert(test_nan, "Not a NAN"); // 100'000'000 constexpr Real test_100m = boost::math::ccmath::sqrt(100000000); static_assert(test_100m == 10000, "Incorrect"); // MAX / 2 // Only tests float since double and long double will exceed maximum template depth if constexpr (std::is_same_v) { constexpr Real test_max = boost::math::ccmath::sqrt((std::numeric_limits::max)() / 2); Real known_max = std::sqrt((std::numeric_limits::max)() / 2); BOOST_TEST(abs(test_max - known_max) < tol); } } template void test_int_sqrt() { using std::abs; constexpr double tol = 2*std::numeric_limits::epsilon(); constexpr double test_val = boost::math::ccmath::sqrt(Z(2)); constexpr double dummy = 1; static_assert(test_val > dummy, "Not constexpr"); double known_val = std::sqrt(2.0); BOOST_TEST(abs(test_val - known_val) < tol); } // Only test on platforms that provide BOOST_MATH_IS_CONSTANT_EVALUATED #ifndef BOOST_MATH_NO_CONSTEXPR_DETECTION int main() { test_float_sqrt(); test_float_sqrt(); #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS test_float_sqrt(); #endif #if defined(BOOST_MATH_TEST_FLOAT128) && !defined(BOOST_MATH_USING_BUILTIN_CONSTANT_P) && !defined(__STRICT_ANSI__) test_mp_sqrt(); #endif test_int_sqrt(); test_int_sqrt(); test_int_sqrt(); test_int_sqrt(); test_int_sqrt(); test_int_sqrt(); return boost::report_errors(); } #else int main() { return 0; } #endif