// boost-no-inspect // (C) Copyright Nick Thompson 2023. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #include #include using boost::math::fourier_transform_daubechies_scaling; using boost::math::tools::ulps_plot; template void real_part() { auto phi_real_hi_acc = [](double omega) { auto z = fourier_transform_daubechies_scaling(omega); return z.real(); }; auto phi_real_lo_acc = [](float omega) { auto z = fourier_transform_daubechies_scaling(omega); return z.real(); }; auto plot = ulps_plot(phi_real_hi_acc, float(0.0), float(100.0), 20000); plot.ulp_envelope(false); plot.add_fn(phi_real_lo_acc); plot.clip(100); plot.title("Accuracy of 𝔑(𝓕[𝜙](ω)) with " + std::to_string(p) + " vanishing moments."); plot.write("real_ft_daub_scaling_" + std::to_string(p) + ".svg"); } template void imaginary_part() { auto phi_imag_hi_acc = [](double omega) { auto z = fourier_transform_daubechies_scaling(omega); return z.imag(); }; auto phi_imag_lo_acc = [](float omega) { auto z = fourier_transform_daubechies_scaling(omega); return z.imag(); }; auto plot = ulps_plot(phi_imag_hi_acc, float(0.0), float(100.0), 20000); plot.ulp_envelope(false); plot.add_fn(phi_imag_lo_acc); plot.clip(100); plot.title("Accuracy of 𝕴(𝓕[𝜙](ω)) with " + std::to_string(p) + " vanishing moments."); plot.write("imag_ft_daub_scaling_" + std::to_string(p) + ".svg"); } int main() { real_part<3>(); imaginary_part<3>(); real_part<6>(); imaginary_part<6>(); return 0; }