2
0
mirror of https://github.com/boostorg/math.git synced 2026-01-19 04:22:09 +00:00

Junk removal

Removal of junk headers, typos, or mistakenly duplicated keywords
This commit is contained in:
Rose
2022-10-30 12:26:52 -04:00
parent cb326912f5
commit fe48a3bba7
58 changed files with 95 additions and 103 deletions

View File

@@ -72,7 +72,7 @@ int main()
r[3.56] = 2.0002;
r[3.72] = 2.0001;
// Let's discover the absissa that will generate a potential of exactly 3.0,
// Let's discover the abscissa that will generate a potential of exactly 3.0,
// start by creating 2 ranges for the x and y values:
auto x_range = boost::adaptors::keys(r);
auto y_range = boost::adaptors::values(r);

View File

@@ -20,7 +20,7 @@
// Weisstein, Eric W. "Bessel Function Zeros." From MathWorld--A Wolfram Web Resource.
// http://mathworld.wolfram.com/BesselFunctionZeros.html
// Test values can be calculated using [@wolframalpha.com WolframAplha]
// Test values can be calculated using [@wolframalpha.com WolframAlpha]
// See also http://dlmf.nist.gov/10.21
//[bessel_errors_example_1

View File

@@ -20,7 +20,7 @@
// Weisstein, Eric W. "Bessel Function Zeros." From MathWorld--A Wolfram Web Resource.
// http://mathworld.wolfram.com/BesselFunctionZeros.html
// Test values can be calculated using [@wolframalpha.com WolframAplha]
// Test values can be calculated using [@wolframalpha.com WolframAlpha]
// See also http://dlmf.nist.gov/10.21
//[bessel_zero_example_1

View File

@@ -21,7 +21,7 @@
// Weisstein, Eric W. "Bessel Function Zeros." From MathWorld--A Wolfram Web Resource.
// http://mathworld.wolfram.com/BesselFunctionZeros.html
// Test values can be calculated using [@wolframalpha.com WolframAplha]
// Test values can be calculated using [@wolframalpha.com WolframAlpha]
// See also http://dlmf.nist.gov/10.21
//[bessel_zeros_example_1

View File

@@ -41,10 +41,10 @@ int main()
// Now we can evaluate the spline wherever we please.
std::mt19937 gen;
boost::random::uniform_real_distribution<double> absissa(0, v.size()*step);
boost::random::uniform_real_distribution<double> abscissa(0, v.size()*step);
for (size_t i = 0; i < 10; ++i)
{
double x = absissa(gen);
double x = abscissa(gen);
std::cout << "sin(" << x << ") = " << sin(x) << ", spline interpolation gives " << spline(x) << std::endl;
std::cout << "cos(" << x << ") = " << cos(x) << ", spline derivative interpolation gives " << spline.prime(x) << std::endl;
}

View File

@@ -580,7 +580,7 @@ int main(int argc, char** argv)
if (debug)
{
for (int64_t i = image_width / 2; i < image_width; ++i)
points[image_width * (image_height - 1) + i] = i & 1 ? 1 : 0;
points[image_width * (image_height - 1) + i] = i & 1;
}
//