Last revised: November 09, 2017 at 13:23:44 GMT
Last revised: November 09, 2017 at 13:29:30 GMT
2 4 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I L M N O P Q R S T U W
A B C D E F G H I L N O P R S T U V W
2 4 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
#include <boost/math/tools/barycentric_rational_interpolation.hpp> +#include <boost/math/interpolators/barycentric_rational.hpp> namespace boost{ namespace math{ template<class Real> @@ -62,7 +62,7 @@ x[n-1] where x[i+1] > x[i], and a vector of dependent variables y[0], y[1], ... , y[n-1]. The call is trivial: -boost::math::tools::barycentric_rational<double> interpolant(x.data(), y.data(), y.size()); +boost::math::barycentric_rational<double> interpolant(x.data(), y.data(), y.size());This implicitly calls the constructor with approximation order 3, and hence @@ -70,7 +70,7 @@ then the error is 𝑶(hd+1). A call to the constructor with an explicit approximation order could be
-boost::math::tools::barycentric_rational<double> interpolant(x.data(), y.data(), y.size(), 5); +boost::math::barycentric_rational<double> interpolant(x.data(), y.data(), y.size(), 5);To evaluate the interpolant, simply use diff --git a/doc/html/math_toolkit/conventions.html b/doc/html/math_toolkit/conventions.html index 33c3149c9..151731c70 100644 --- a/doc/html/math_toolkit/conventions.html +++ b/doc/html/math_toolkit/conventions.html @@ -27,7 +27,7 @@ Document Conventions
This documentation aims to use of the following naming and formatting conventions. diff --git a/doc/html/math_toolkit/double_exponential/de_thread.html b/doc/html/math_toolkit/double_exponential/de_thread.html index f776bb5ef..002a2c66e 100644 --- a/doc/html/math_toolkit/double_exponential/de_thread.html +++ b/doc/html/math_toolkit/double_exponential/de_thread.html @@ -29,7 +29,7 @@
All three of the double-exponential integrators are thread safe as long as BOOST_MATH_NO_ATOMIC_INT is not set. Since the integrators store a large - amount of fairly hard to compute data, it is recomended that these objects + amount of fairly hard to compute data, it is recommended that these objects are stored and reused as much as possible.
diff --git a/doc/html/math_toolkit/navigation.html b/doc/html/math_toolkit/navigation.html index 52cc7ffcb..7df9ce75d 100644 --- a/doc/html/math_toolkit/navigation.html +++ b/doc/html/math_toolkit/navigation.html @@ -27,7 +27,7 @@ Navigation
Boost.Math documentation is provided in both HTML and PDF formats. diff --git a/doc/html/math_toolkit/trapezoidal.html b/doc/html/math_toolkit/trapezoidal.html index 297287c4f..6657718db 100644 --- a/doc/html/math_toolkit/trapezoidal.html +++ b/doc/html/math_toolkit/trapezoidal.html @@ -82,7 +82,7 @@
using boost::math::quadrature::trapezoidal; auto f = [](double x) { return 1/(5 - 4*cos(x)); }; -double I = trapezoidal(f, 0, boost::math::constants::two_pi<double>()); +double I = trapezoidal(f, 0.0, boost::math::constants::two_pi<double>());
Since the routine is adaptive, step sizes are halved continuously until a tolerance @@ -113,7 +113,7 @@ types, it may be of interest to allow the algorithm to compute more refinements:
size_t max_refinements = 15; -long double I = trapezoidal(f, 0, two_pi<long double>(), 1e-9L, max_refinements); +long double I = trapezoidal(f, 0.0L, two_pi<long double>(), 1e-9L, max_refinements);
Note that the maximum allowed compute time grows exponentially with max_refinements. The routine will not throw
@@ -125,7 +125,7 @@
double error_estimate; double L1; -double I = trapezoidal(f, 0, two_pi<double>(), tolerance, max_refinements, &error_estimate, &L1); +double I = trapezoidal(f, 0.0, two_pi<double>(), tolerance, max_refinements, &error_estimate, &L1); if (error_estimate > tolerance*L1) { double I = some_other_quadrature_method(f, 0, two_pi<double>());