From 8332808ebcffad7598e02247835b28f5ca74a1bc Mon Sep 17 00:00:00 2001 From: Matt Borland Date: Fri, 22 Dec 2023 07:13:10 -0500 Subject: [PATCH] Address review comments [CI SKIP] --- doc/internals/polynomial.qbk | 2 +- include/boost/math/special_functions/detail/bessel_ik.hpp | 6 +++--- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/doc/internals/polynomial.qbk b/doc/internals/polynomial.qbk index 50513a2a4..b5c6b5fed 100644 --- a/doc/internals/polynomial.qbk +++ b/doc/internals/polynomial.qbk @@ -22,7 +22,7 @@ template polynomial(const U* data, unsigned order); template - polynomial(I first, I last); + polynomial(Iterator first, Iterator last); template explicit polynomial(const U& point, typename std::enable_if >::type* = nullptr); diff --git a/include/boost/math/special_functions/detail/bessel_ik.hpp b/include/boost/math/special_functions/detail/bessel_ik.hpp index 6e829f3b4..7d0a4e79f 100644 --- a/include/boost/math/special_functions/detail/bessel_ik.hpp +++ b/include/boost/math/special_functions/detail/bessel_ik.hpp @@ -77,7 +77,7 @@ inline T bessel_i_small_z_series(T v, T x, const Policy& pol) return prefix * result; } -// Calculate result_K(v, x) and result_K(v+1, x) by method analogous to +// Calculate K(v, x) and K(v+1, x) by method analogous to // Temme, Journal of Computational Physics, vol 21, 343 (1976) template int temme_ik(T v, T x, T* result_K, T* K1, const Policy& pol) @@ -200,7 +200,7 @@ int CF1_ik(T v, T x, T* fv, const Policy& pol) return 0; } -// Calculate result_K(v, x) and result_K(v+1, x) by evaluating continued fraction +// Calculate K(v, x) and K(v+1, x) by evaluating continued fraction // z1 / z0 = U(v+1.5, 2v+1, 2x) / U(v+0.5, 2v+1, 2x), see // Thompson and Barnett, Computer Physics Communications, vol 47, 245 (1987) template @@ -374,7 +374,7 @@ int bessel_ik(T v, T x, T* result_I, T* result_K, int kind, const Policy& pol) current = Ku1; T scale = 1; T scale_sign = 1; - for (k = 1; k <= n; k++) // forward recurrence for result_K + for (k = 1; k <= n; k++) // forward recurrence for K { T fact = 2 * (u + k) / x; // Check for overflow: if (max - |prev|) / fact > max, then overflow