2
0
mirror of https://github.com/boostorg/math.git synced 2026-01-19 04:22:09 +00:00

Fix typos

This commit is contained in:
Brian Wignall
2020-01-12 15:30:30 -05:00
parent bb65bf290e
commit 740a73c523
16 changed files with 26 additions and 26 deletions

View File

@@ -388,7 +388,7 @@ There are also various special cases: refer to the code for details. ]]
* [@http://mathworld.wolfram.com/BinomialDistribution.html Weisstein, Eric W. "Binomial Distribution." From MathWorld--A Wolfram Web Resource].
* [@http://en.wikipedia.org/wiki/Beta_distribution Wikipedia binomial distribution].
* [@http://www.itl.nist.gov/div898/handbook/eda/section3/eda366i.htm NIST Explorary Data Analysis].
* [@http://www.itl.nist.gov/div898/handbook/eda/section3/eda366i.htm NIST Exploratory Data Analysis].
[endsect] [/section:binomial_dist Binomial]

View File

@@ -144,7 +144,7 @@ is used to obtain the result. Whether we're adding
* [@http://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm NIST Exploratory Data Analysis]
* [@http://mathworld.wolfram.com/CauchyDistribution.html Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A Wolfram Web Resource.]
[endsect][/section:cauchy_dist Cauchi]
[endsect][/section:cauchy_dist Cauchy]
[/ cauchy.qbk
Copyright 2006, 2007 John Maddock and Paul A. Bristow.

View File

@@ -185,7 +185,7 @@ where ['T(h,a)] is Owen's T function, and ['[Phi](x)] is the normal distribution
[endsect] [/section:skew_normal_dist skew_Normal]
[/ skew_normal.qbk
Copyright 2012 Bejamin Sobotta, John Maddock and Paul A. Bristow.
Copyright 2012 Benjamin Sobotta, John Maddock and Paul A. Bristow.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).

View File

@@ -52,7 +52,7 @@ along with the incomplete gamma and beta functions (four variants
of each) and all the possible inverses of these, plus digamma,
various factorial functions,
Bessel functions, elliptic integrals, sinus cardinals (along with their
hyperbolic variants), inverse hyperbolic functions, Legrendre/Laguerre/Hermite
hyperbolic variants), inverse hyperbolic functions, Legendre/Laguerre/Hermite
polynomials and various
special power and logarithmic functions.

View File

@@ -115,7 +115,7 @@ of floating-point values.
The result of [@boost:/libs/math/include/boost/math/tools/roots.hpp `newton_raphson_iterate`]
function is a single value.
[tip There is a compromise between accuracy and speed when chosing the value of `digits`.
[tip There is a compromise between accuracy and speed when choosing the value of `digits`.
It is tempting to simply chose `std::numeric_limits<T>::digits`,
but this may mean some inefficient and unnecessary iterations as the function thrashes around
trying to locate the last bit. In theory, since the precision doubles with each step
@@ -230,7 +230,7 @@ If your differentiation is a little rusty
then you can get help, for example, from the invaluable
[@http://www.wolframalpha.com/ WolframAlpha site.]
For example, entering the commmand: `differentiate x ^ 5`
For example, entering the command: `differentiate x ^ 5`
or the Wolfram Language command: ` D[x ^ 5, x]`

View File

@@ -126,7 +126,7 @@ in the difficult area where ['a] is close to 1, and greater than 95 decimal plac
[endsect] [/section:owens_t The owens_t Function]
[/
Copyright 2012 Bejamin Sobotta, John Maddock and Paul A. Bristow.
Copyright 2012 Benjamin Sobotta, John Maddock and Paul A. Bristow.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).

View File

@@ -147,8 +147,8 @@ Finally, print two tables of probability for the /exactly/ and /at least/ a numb
} // for i
cout << endl;
// Tabulate the probability of getting between zero heads and 0 upto 10 heads.
cout << "Probability of getting upto (<=) heads" << endl;
// Tabulate the probability of getting between zero heads and 0 up to 10 heads.
cout << "Probability of getting up to (<=) heads" << endl;
for (int successes = 0; successes <= flips; successes++)
{ // Say success means getting a head
// (equally success could mean getting a tail).
@@ -226,7 +226,7 @@ Probability of getting exactly (==) heads
9 0.009766 or 1 in 102.4, or 0.9766%
10 0.0009766 or 1 in 1024, or 0.09766%
Probability of getting upto (<=) heads
Probability of getting up to (<=) heads
0 0.0009766 or 1 in 1024, or 0.09766%
1 0.01074 or 1 in 93.09, or 1.074%
2 0.05469 or 1 in 18.29, or 5.469%

View File

@@ -136,7 +136,7 @@ struct root_info
// = digits * digits_accuracy
// Vector of values (4) for each algorithm, TOMS748, Newton, Halley & Schroder.
//std::vector< boost::int_least64_t> times; converted to int.
std::vector<int> times; // arbirary units (ticks).
std::vector<int> times; // arbitrary units (ticks).
//boost::int_least64_t min_time = std::numeric_limits<boost::int_least64_t>::max(); // Used to normalize times (as int).
std::vector<double> normed_times;
int min_time = (std::numeric_limits<int>::max)(); // Used to normalize times.
@@ -223,7 +223,7 @@ T elliptic_root_noderiv(T radius, T arc)
//[elliptic_1deriv_func
template <class T = double>
struct elliptic_root_functor_1deriv
{ // Functor also returning 1st derviative.
{ // Functor also returning 1st derivative.
BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");
elliptic_root_functor_1deriv(T const& arc, T const& radius) : m_arc(arc), m_radius(radius)
@@ -581,7 +581,7 @@ int test_root(cpp_bin_float_100 big_radius, cpp_bin_float_100 big_arc, cpp_bin_f
return 4; // eval_count of how many algorithms used.
} // test_root
/*! Fill array of times, interations, etc for Nth root for all 4 types,
/*! Fill array of times, iterations, etc for Nth root for all 4 types,
and write a table of results in Quickbook format.
*/
void table_root_info(cpp_bin_float_100 radius, cpp_bin_float_100 arc)

View File

@@ -782,7 +782,7 @@ inline T rising_factorial_ratio(T a, T b, int k)
// Routine for a > 15, b < 1
//
// Begin by figuring out how large our table of Pn's should be,
// quoted accuracies are "guestimates" based on empirical observation.
// quoted accuracies are "guesstimates" based on empirical observation.
// Note that the table size should never exceed the size of our
// tables of factorials.
//

View File

@@ -993,7 +993,7 @@ T lambert_w0_approx(T z)
//! float precision polynomials are used for 32-bit (usually float) precision (for speed)
//! double precision polynomials are used for 64-bit (usually double) precision.
//! For higher precisions, a 64-bit double approximation is computed first,
//! and then refined using Halley interations.
//! and then refined using Halley iterations.
template <class T>
inline T get_near_singularity_param(T z)

View File

@@ -581,7 +581,7 @@ namespace boost
// that each term decreases in size by a factor of 3. However,
// that assumption does not apply here, as the underlying T1 series can
// go quite strongly divergent in the early terms, before strongly
// converging later. Various "guestimates" have been tried to take account
// converging later. Various "guesstimates" have been tried to take account
// of this, but they don't always work.... so instead set "n" to the
// largest value that won't cause overflow later, and abort iteration
// when the last accelerated term was small enough...
@@ -699,7 +699,7 @@ namespace boost
// that each term decreases in size by a factor of 3. However,
// that assumption does not apply here, as the underlying T1 series can
// go quite strongly divergent in the early terms, before strongly
// converging later. Various "guestimates" have been tried to take account
// converging later. Various "guesstimates" have been tried to take account
// of this, but they don't always work.... so instead set "n" to the
// largest value that won't cause overflow later, and abort iteration
// when the last accelerated term was small enough...

View File

@@ -555,8 +555,8 @@ BOOST_AUTO_TEST_CASE_TEMPLATE(arithmetic_test, T, test_types)
T t = 5;
T radius = boost::math::constants::root_two<T>();
T longitude = boost::math::constants::pi<T>() / 4;
T lattitude = boost::math::constants::pi<T>() / 3;
q1 = ::boost::math::cylindrospherical(t, radius, longitude, lattitude);
T latitude = boost::math::constants::pi<T>() / 3;
q1 = ::boost::math::cylindrospherical(t, radius, longitude, latitude);
check_approx_quaternion_result(q1, 5, 0.5, 0.5, boost::lexical_cast<T>("1.224744871391589049098642037352945695983"), 10);
T r = boost::math::constants::root_two<T>();
T angle = boost::math::constants::pi<T>() / 4;

View File

@@ -213,7 +213,7 @@ void test_spots(RealType)
BOOST_CHECK_CLOSE(
median(dist), static_cast<RealType>(23.007748327502412), // double precision test value
(std::max)(tol2, static_cast<RealType>(std::numeric_limits<double>::epsilon() * 2 * 100))); // 2 eps as persent
(std::max)(tol2, static_cast<RealType>(std::numeric_limits<double>::epsilon() * 2 * 100))); // 2 eps as percent
using std::log;
RealType expected_entropy = RealType(8) + log(RealType(3)) + boost::math::lgamma(RealType(8)) - 7*boost::math::digamma(RealType(8));

View File

@@ -43,8 +43,8 @@ Test 5: test_mmm_moments()
standard_deviation = sqrt(2)*scale
skewness == 0
kurtoris == 6
excess kurtoris == 3
kurtosis == 6
excess kurtosis == 3
Test 6: test_complemented()
Test the cdf an quantile complemented function.

View File

@@ -225,11 +225,11 @@ void test_spots(RealType)
BOOST_CHECK_CLOSE(
skewness(dist)
, static_cast<RealType>(729551.38304660255658441529235697L), tolerance);
// kertosis:
// kurtosis:
BOOST_CHECK_CLOSE(
kurtosis(dist)
, static_cast<RealType>(4312295840576303.2363383232038251L), tolerance);
// kertosis excess:
// kurtosis excess:
BOOST_CHECK_CLOSE(
kurtosis_excess(dist)
, static_cast<RealType>(4312295840576300.2363383232038251L), tolerance);

View File

@@ -224,10 +224,10 @@ void test_spots(RealType)
// skewness:
BOOST_CHECK_CLOSE_FRACTION(
skewness(pareto15), static_cast<RealType>(4.6475800154489004L), tol5eps);
// kertosis:
// kurtosis:
BOOST_CHECK_CLOSE_FRACTION(
kurtosis(pareto15), static_cast<RealType>(73.8L), tol5eps);
// kertosis excess:
// kurtosis excess:
BOOST_CHECK_CLOSE_FRACTION(
kurtosis_excess(pareto15), static_cast<RealType>(70.8L), tol5eps);
// Check difference between kurtosis and excess: