mirror of
https://github.com/boostorg/math.git
synced 2026-01-26 06:42:12 +00:00
Reorganised into two examples.
[SVN r3306]
This commit is contained in:
@@ -87,7 +87,7 @@ int main()
|
||||
#endif
|
||||
cout << endl;
|
||||
|
||||
// Some examples of constructing negative binomial distributions:
|
||||
// Some examples of constructing distribution, for example negative binomial:
|
||||
// Fundamentally constructed like this:
|
||||
boost::math::negative_binomial_distribution<double> mydist0(8., 0.25);
|
||||
// But is inconveniently long.
|
||||
@@ -104,7 +104,6 @@ int main()
|
||||
// And if you have your own RealType then:
|
||||
// negative_binomial_distribution<YourType> mydist6(8, 1); // Integer arguments -> YourType.
|
||||
|
||||
// negative_binomial_distribution<> mydist7; // error C2512 no appropriate default constructor available.
|
||||
// negative_binomial_distribution<> mydist8; // error C2512 no appropriate default constructor available.
|
||||
// Since there are no accessor functions, no default constructor are provided,
|
||||
// because it is difficult to chose any sensible default values.
|
||||
@@ -230,8 +229,8 @@ int main()
|
||||
Output is:
|
||||
|
||||
Example 1 using the Negative_binomial Distribution. ..\..\..\..\..\..\boost-san
|
||||
dbox\libs\math_functions\example\negative_binomial_example1.cpp Fri Oct 20 19:14
|
||||
:47 2006 140050727
|
||||
dbox\libs\math_functions\example\negative_binomial_example1.cpp Mon Oct 23 13:57
|
||||
:11 2006 140050727
|
||||
|
||||
Selling candy bars - an example of using the negative binomial distribution.
|
||||
An example by Dr. Diane Evans,
|
||||
@@ -283,9 +282,9 @@ If confidence of meeting quota is 0.9, then finishing house is 18
|
||||
If confidence of meeting quota is 0.95, then finishing house is 21
|
||||
If confidence of meeting quota is 0.99, then finishing house is 25
|
||||
If confidence of meeting quota is 0.999, then finishing house is 32
|
||||
If confidence of meeting quota is 1, then finishing house is 1.8e+308
|
||||
If we demand a confidence of meeting sales quota of unity (so we never achieve 5
|
||||
sales), then we can never be certain, so the finishing house is infinite!
|
||||
If confidence of meeting quota is 1, then finishing house is 1.#J
|
||||
If we demand a confidence of meeting sales quota of unity (so we never achieve 5 sales),
|
||||
then we can never be certain, so the finishing house is infinite!
|
||||
Press any key to continue . . .
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user